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A Supplementary materials

This document gives the proof for Lemma 1 in the main paper, and fills in the details of the proofs
of Theorem 3 and Theorem 4 in the main paper.
Lemma 1. For any λ ∈ (0, 1), for any n ≥ 4λ−2 + 1,

P{χ2
n < n(1− λ)} ≤ 1

λ
√
π(n− 1)

e−
n−1

2 (λ−log(1+λ)) .

Remark 1. We note that some lower bound on n is intuitively necessary in order to be able to bound
the ‘left tail’, because the mode of the χ2

n distribution is at x = n− 2 (for n ≥ 2). If λ is very close
to zero, then the ‘left tail’ (χ2

n ∈ [0, n(1− λ)]) actually includes the mode x = n− 2 ≤ n(1− λ);
therefore, we could not hope to get an exponentially small probability for being in the tail. However,
this intuitive explanation suggests that we should have n ≥ O(λ−1); perhaps the bound in this
lemma could be tightened.

We first prove a preliminary lemma:
Lemma A.1. For any λ > 0, for any n ≥ 4λ−2 + 1,

P{χ2
n+1 < (n+ 1)(1− λ)} ≤ P{χ2

n ≤ n(1− λ)} .

Proof. Let fn denote the density function for χ2
n, and let f̃n denote the density function for 1

nχ
2
n.

Then, using y = x/n, we get:

fn(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2 ⇒ f̃n(y) =

1
2n/2Γ(n/2)

yn/2−1e−ny/2nn/2 .

So,

f̃n+1(y) = f̃n(y)×

[√
n+ 1

2
Γ(n/2)

Γ((n+ 1)/2)

(
n+ 1
n

)n/2√
ye−y

]
.

First, note that ye−y is an increasing function for y < 1, and therefore

y ∈ [0, 1− λ] ⇒ ye−y ≤ (1− λ)e−(1−λ) ≤ e−1

(
1− λ2

2

)
.

(Here the last inequality is from the Taylor series). Next, since log Γ(x) is a convex function (where
x > 0), and since Γ((n+ 1)/2) = Γ((n− 1)/2)× n−1

2 , we see that

Γ((n+ 1)/2)
Γ(n/2)

≥
√
n− 1

2
.

Finally, it is a fact that (1 + 1
n )n ≤ e. Putting the above bounds together, and assuming that

y ∈ [0, 1− λ], we obtain

f̃n+1(y) ≤ f̃n(y)×

[√
n+ 1

2

√
2

n− 1
√
e

√
e−1

(
1− λ2

2

)]
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= f̃n(y)×

[√
n+ 1
n− 1

√
1− λ2

2

]
.

Since we require n ≥ 4λ−2 + 1, the quantity in the brackets is at most 1, and so

f̃n+1(y) ≤ f̃n(y) ∀ y ∈ [0, 1− λ] .

Therefore,

P

{
1

n+ 1
χ2
n+1 < (1− λ)

}
≤ P

{
1
n
χ2
n < (1− λ)

}
.

Now we prove Lemma 1.

Proof. First suppose that n is even. Let fn denote the density function of the χ2
n distribution. From

Cai [10] (as cited in the paper), if n > 2,

P{χ2
n < x} = 1− 2fn(x)− P{χ2

n−2 > x} = −2fn(x) + P{χ2
n−2 < x} .

Iterating this identity, we get

P{χ2
n < x} = P{χ2

2 < x} − 2fn(x)− 2fn−2(x)− · · · − 2f4(x)

= 1− e− x2 − 2
n/2−1∑
k=1

f2k+2(x)

= 1− e− x2 − 2
n/2−1∑
k=1

1
2k+1Γ(k + 1)

xke−
x
2

= 1− e− x2

n/2−1∑
k=0

1
2kk!

xk


= 1− e− x2

 ∞∑
k=0

(x/2)k

k!
−

∞∑
k=n/2

(x/2)k

k!


= 1− e− x2

e x2 − ∞∑
k=n/2

(x/2)k

k!


= e−

x
2

∞∑
k=n/2

(x/2)k

k!
.

Now set x = n(1− λ) for λ ∈ (0, 1). We obtain

P{χ2
n < x} = e−

n(1−λ)
2

∞∑
k=n/2

(n(1− λ)/2)k

k!

≤ e−
n(1−λ)

2
(n/2)n/2

(n/2)!

∞∑
k=n/2

(1− λ)k

= e−
n(1−λ)

2
(n/2)n/2

(n/2)!
(1− λ)n/2

λ
.

By Stirling’s formula,
(n/2)n/2

(n/2)!
≤ e

n
2

√
πn

,

2



and so,

P{χ2
n < n(1− λ)} ≤ e−

n(1−λ)
2

e
n
2

√
πn

(1− λ)n/2

λ
=

1
λ
√
πn

e
n
2 (λ+log(1−λ)) .

This is clearly sufficient to prove the desired bound in the case that n is even. Next we turn to the
odd case; let n be odd. First observe that if λ > 1, the statement is trivial, while if λ ≤ 1, then
n ≥ 4λ−2 + 1 ≥ 5, therefore n− 1 is positive. By Lemma A.1 and the expression above,

P{χ2
n < n(1− λ)} ≤ P{χ2

n−1 ≤ (n− 1)(1− λ)} ≤ 1
λ
√
π(n− 1)

e
n−1

2 (λ+log(1−λ)) .

Next we turn to the theorems in the paper. Recall the assumptions made in the paper: we assume the
following, where ε0, ε1 > 0, C ≥ σ2

maxλmax, κ = logn p, and γ0 = γ − (1− 1
4κ ):

(p+ 2q) log p
n

× λ2
max

θ20
≤ 1

3200 max{1 + γ0,
(
1 + ε1

2

)
C2}

, (1)

2(
√

1 + γ0 − 1)− log log p+ log(4
√

1 + γ0) + 1
2 log p

≥ ε0 . (2)

Lemmas A.2 and A.3 below are sufficient to fill in the details of Theorem 3 in the paper.
Lemma A.2. With probability at least 1 − 1√

π log p
e−ε1 log p, the following holds for all edges e in

the complete graph:
(sn(Θ0))2e ≤ 6σ4

max(2 + ε1)n log p .

Proof. Fix some edge e = {j, k}. Then

(sn(Θ0))(j,k) =
n

2
(Σ0)jk −

1
2
XT
j Xk = −1

2

n∑
i=1

((Xj)i(Xk)i − (Σ0)jk) .

Write Yj = ((Σ0)jj)−1Xj , Yk = ((Σ0)kk)−1Xk, ρ = ((Σ0)jj(Σ0)kk)−1(Σ0)jk = corr(Yj , Yk).
Then

(sn(Θ0))(j,k) = −1
2

(Σ0)jj(Σ0)kk
n∑
i=1

((Yj)i(Yk)i − ρ) .

By Lemma 2 in the paper, there are some independent A,B ∼ χ2
n such that

(sn(Θ0))(j,k) = −1
2

(Σ0)jj(Σ0)kk

[(
1 + ρ

2

)
(A− n)−

(
1− ρ

2

)
(B − n)

]
.

There are
(
p
2

)
≤ 1

2p
2 edges in the complete graph. Therefore, by the union bound, it will suffice to

show that, with probability at least 1− ( 1
2p

2)−1 1√
π log p

e−ε1 log p,

1
4
σ4
max

[(
1 + ρ

2

)
(A− n)−

(
1− ρ

2

)
(B − n)

]2
≤ 6σ4

max(2 + ε1)n log p .

Suppose this bound does not hold. Then∣∣∣∣(1 + ρ

2

)
(A− n)

∣∣∣∣ >√6(2 + ε1)n log p or
∣∣∣∣(1− ρ

2

)
(B − n)

∣∣∣∣ >√6(2 + ε1)n log p .

Since ρ ∈ [−1, 1], this implies that

|A− n| >
√

6(2 + ε1)n log p or |B − n| >
√

6(2 + ε1)n log p .

Since A D= B, it will suffice to show that with probability at least 1− p−2 1√
π log p

e−ε1 log p,

|A− n| ≤
√

6(2 + ε1)n log p .
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Write λ =
√

6(2 + ε1) log p
n . Observe that, by assumption (1), λ ≤ 1

2 and n ≥ 3; therefore (by
Taylor series),

n

2
(λ− log(1 + λ)) ≥ n

2

(
λ2

2
− λ3

3

)
≥ n

2
· λ

2

3
= (2 + ε1) log p , and

−n− 1
2

(λ+ log(1− λ)) ≥ n− 1
2

(
λ2

2

)
≥ n

2
· λ

2

3
= (2 + ε1) log p .

Furthermore,

λ
√
n− 1 =

√
6(2 + ε1) log p× n− 1

n
≥
√

log p .

By (CSB) from the paper,

P{A− n >
√

6(2 + ε1)n log p} = P{A > n(1 + λ)} ≤ 1
λ
√
πn

e−
n
2 (λ−log(1+λ))

≤ 1
λ
√
π(n− 1)

e−(2+ε1) log p ≤ 1√
π log p

e−(2+ε1) log p ,

and also,

P{A− n < −
√

6(2 + ε1)n log p} = P{A < n(1− λ)} ≤ 1
λ
√
π(n− 1)

e
n−1

2 (λ+log(1−λ))

≤ 1
λ
√
π(n− 1)

e−(2+ε1) log p ≤ 1√
π log p

e−(2+ε1) log p .

This gives the desired result.

Lemma A.3. Recall that, in the proof of Theorem 3 in the paper, we showed that

ln(Θ)− ln(Θ0) ≤
√
θ20(p+ 2q)× 6σ4

max(2 + ε1)n log p− 1
2
θ20 ×

n

2
(2λmax)−2 .

Then this implies that
ln(Θ)− ln(Θ0) ≤ −2q(log p)(1 + γ0) .

Proof. It is sufficient to show that√
θ20(p+ 2q)× 6σ4

max(2 + ε1)n log p− 1
2
θ20 ×

n

2
(2λmax)−2 ≤ −(p+ 2q)(log p)(1 + γ0) .

We rewrite this as√
A× n2θ40λ

−2
max6σ4

max(2 + ε1)− 1
2
θ20 ×

n

2
(2λmax)−2 ≤ −A× n× θ20λ−2

max(1 + γ0) ,

where

A =
(p+ 2q) log p

n
× λ2

max

θ20
.

Using C ≥ σ2
maxλmax, it’s sufficient to show that√

A× n2θ40λ
−4
max6C2(2 + ε1)− 1

2
θ20 ×

n

2
(2λmax)−2 ≤ −A× n× θ20λ−2

max(1 + γ0) .

Dividing out common factors, the above is equivalent to showing that√
A× 6C2(2 + ε1)− 1

16
≤ −A× (1 + γ0) .

By assumption (1), we know:

A× (1 + γ0) ≤ 1
3200

,

and also,

A× 6C2(2 + ε1) ≤ 12× 1
3200

.

Therefore,

A× (1 + γ0) +
√
A× 6C2(2 + ε1) ≤ 1

3200
+

√
12

3200
<

1
16

,

as desired.
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Lemma A.4 below is sufficient to fill in the details of Theorem 4 in the paper.
Lemma A.4. Recall that, in the proof of Theorem 4 in the paper, we showed that, stochastically,

ln(Θ̂(s))− ln(Θ̂(s0)) ≤ n

2
× 1
n−
√

2q − 1
χ2
m .

Then this implies that

P{ln(Θ̂(s))− ln(Θ̂(s0)) ≥ 2(1 + γ0)m log(p)} ≤ 1
4
√
π log p

e−
m
2 (4(1+

ε0
2 ) log p) .

Proof. First, we show that n−
√

2q−1
n ≥ (1 + γ0)−

1
2 . By assumption (2) we see that:

1
log p

≤ 4(
√

1 + γ0 − 1) .

Now turn to assumption (1). We see that the right-hand side of (1) is ≤ 1
4
√

1+γ0
. On the left-hand

side of (1), by definition, λ2
max ≥ θ20 . Therefore,

(p+ 2q) log p
n

≤ 1
4
√

1 + γ0
.

Therefore, √
2q + 1
n

≤ p+ 2q
n

≤ 4(
√

1 + γ0 − 1)
4
√

1 + γ0
= 1− 1√

1 + γ0
,

and so,
n−
√

2q − 1
n

≥ (1 + γ0)−
1
2 .

Therefore, using the stochastic inequality in the statement in the lemma,

P{ln(Θ̂(s))− ln(Θ̂(s0)) ≥ 2(1 + γ0)m log(p)}

≤ P{χ2
m ≥ 4(1 + γ0)m log p× n−

√
2q − 1
n

}

≤ P{χ2
m ≥ 4

√
1 + γ0m log p} .

Now we apply Cai’s [10] (CSB) as cited in the paper, and obtain that

P{χ2
m ≥ 4

√
1 + γ0m log p} ≤ 1

(4
√

1 + γ0 log p− 1)
√
πm

e−
m
2 (4
√

1+γ0 log p−1−log(4
√

1+γ0 log p)) .

Since m ≥ 1 and 1
log p ≤ 4(

√
1 + γ0 − 1), we obtain that the upper bound is at most

1
4
√
π log p

e−
m
2 (4
√

1+γ0 log p−1−log(4
√

1+γ0 log p))

=
1

4
√
π log p

e−
m
2 (4
√

1+γ0 log p−(log log p+log(4
√

1+γ0)+1))

=
1

4
√
π log p

e−
m
2 (2 log p)(2

√
1+γ0−(log log p+log(4

√
1+γ0)+1)/(2 log p)) .

By assumption (2), we may further bound this expression from above as

1
4
√
π log p

e−
m
2 (2 log p)(2+ε0) =

1
4
√
π log p

e−
m
2 4(1+

ε0
2 ) log p .
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