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Abstract

We introduce a novel multivariate Laplace (MVL) distribution as a sparsity pro-
moting prior for Bayesian source localization that allows the specification of con-
straints between and within sources. We represent the MVL distribution as a scale
mixture that induces a coupling between source variances instead of their means.
Approximation of the posterior marginals using expectation propagation is shown
to be very efficient due to properties of the scale mixture representation. The com-
putational bottleneck amounts to computing the diagonal elements of a sparse ma-
trix inverse. Our approach is illustrated using a mismatch negativity paradigm for
which MEG data and a structural MRI have been acquired. We show that spatial
coupling leads to sources which are active over larger cortical areas as compared
with an uncoupled prior.

1 Introduction

Electroencephalography (EEG) and magnetoencephalography (MEG) provide an instantaneous and
non-invasive measure of brain activity. Let q, p, and t denote the number of sensors, sources and
time points, respectively. Sensor readings Y ∈ Rq×t and source currents S ∈ Rp×t are related by

Y = XS + E (1)

where X ∈ Rq×p is a lead field matrix that represents how sources project onto the sensors and
E ∈ Rq×t represents sensor noise.

Unfortunately, localizing distributed sources is an ill-posed inverse problem that only admits a
unique solution when additional constraints are defined. In a Bayesian setting, these constraints
take the form of a prior on the sources [3, 19]. Popular choices of prior source amplitude distri-
butions are Gaussian or Laplace priors, whose MAP estimates correspond to minimum norm and
minimum current estimates, respectively [18]. Minimum norm estimates produce spatially smooth
solutions but are known to suffer from depth bias and smearing of nearby sources. In contrast, mini-
mum current estimates lead to focal source estimates that may be scattered too much throughout the
brain volume [9].

In this paper, we take the Laplace prior as our point of departure for Bayesian source localization
(instead of using just the MAP estimate). The obvious approach is to assume univariate Laplace
priors on individual sources. Here, in contrast, we assume a multivariate Laplace distribution over
all sources, which allows sources to be coupled. We show that such a distribution can be represented
as a scale mixture [2] that differs substantially from the one presented in [5].

Our representation allows the specification of both spatio-temporal as well as sparsity constraints.
Since the posterior cannot be computed exactly, we formulate an efficient expectation propagation
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algorithm [12] which allows us to approximate the posterior of interest for very large models. Ef-
ficiency arises from the block diagonal form of the approximate posterior covariance matrix due to
properties of the scale mixture representation. The computational bottleneck then reduces to com-
putation of the diagonal elements of a sparse matrix inverse, which can be solved through Cholesky
decomposition of a sparse matrix and application of the Takahashi equation [17]. Furthermore, mo-
ment matching is achieved by one-dimensional numerical integrations. Our approach is evaluated
on MEG data that was recorded during an oddball task.

2 Bayesian source localization

In a Bayesian setting, the goal of source localization is to estimate the posterior

p(S | Y,X,Σ,Θ) ∝ p(Y | S,X,Σ)p(S | Θ) (2)

where the likelihood term p(Y | S) =
∏
tN (yt | Xst,Σ) factorizes over time and Σ represents

sensor noise. The prior p(S | Θ), with Θ acting as a proxy for the hyper-parameters, can be used
to incorporate (neuroscientific) constraints. For simplicity, we assume independent Gaussian noise
with a fixed variance σ2, i.e., Σ = σ2I. Without loss of generality, we will focus on one time-point
(yt, st) only and drop the subscript when clear from context.1

The source localization problem can be formulated as a (Bayesian) linear regression problem where
the source currents s play the role of the regression coefficients and rows of the lead field matrix
X can be interpreted as covariates. In the following, we define a multivariate Laplace distribution,
represented in terms of a scale mixture, as a convenient prior that incorporates both spatio-temporal
and sparsity constraints.

The univariate Laplace distribution

L (s | λ) ≡ λ

2
exp (−λ|s|) (3)

can be represented as a scale mixture of Gaussians [2], the scaling function being an exponential
distribution with parameter λ2/2. The scale parameter λ controls the width of the distribution and
thus the regularizing behavior towards zero. Since the univariate exponential distribution is a χ2

2
distribution, one can alternatively write

L (s | λ) =
∫
dudvN

(
s | 0, u2 + v2

)
N
(
u | 0, 1/λ2

)
N
(
v | 0, 1/λ2

)
. (4)

Eltoft et al [5] defined the multivariate Laplace distribution as a scale mixture of a multivariate
Gaussian given by

√
zΣ1/2s where s is a standard normal multivariate Gaussian, Σ is a positive

definite matrix, and z is drawn from a univariate exponential distribution. The work presented
in [11] is based on similar ideas but replaces the distribution on z with a multivariate log-normal
distribution.

In contrast, we use an alternative formulation of the multivariate Laplace distribution that couples
the variances of the sources rather than the source currents themselves. This is achieved by gener-
alizing the representation in Eq. (4) to the multivariate case. For an uncoupled multivariate Laplace
distribution, this generalization reads

L (s | λ) =
∫
dudv

∏
i

N
(
si | 0, u2

i + v2
i

)
N
(
vi | 0, 1/λ2

)
N
(
ui | 0, 1/λ2

)
(5)

such that each source current si gets assigned scale variables ui and vi. We can interpret the scale
variables corresponding to source i as indicators of its relevance: the larger (the posterior estimate
of) u2

i + v2
i , the more relevant the corresponding source. In order to introduce correlations between

sources, we define our multivariate Laplace (MVL) distribution as the following scale mixture:

L (s | λ,J) ≡
∫
dudv

(∏
i

N
(
si | 0, u2

i + v2
i

))
N
(
v | 0,J−1/λ2

)
N
(
u | 0,J−1/λ2

)
, (6)

1Multiple time-points can be incorporated by vectorizing Y and S, and augmenting X.
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Figure 1: Factor graph representation of Bayesian source localization with a multivariate Laplace
prior. The factor f represents the likelihood term N

(
y | Xs, σ2I

)
. Factors gi correspond to the

coupling between sources and scales. Factors h1 and h2 represent the (identical) multivariate Gaus-
sians on u and v with prior precision matrix J. The gi are the only non-Gaussian terms and need to
be approximated.

where J−1 is a normalized covariance matrix. This definition yields a coupling in the magnitudes
of the source currents through their variances. The normalized covariance matrix J−1 specifies the
correlation strengths, while λ acts as a regularization parameter. Note that this approach is defining
the multivariate Laplace with the help of a multivariate exponential distribution [10]. As will be
shown in the next section, apart from having a semantics that differs from [5], our scale mixture rep-
resentation has some desirable characteristics that allow for efficient approximate inference. Based
on the above formulation, we define the sparse linear model as

p(y, s | X, σ2, λ,J) = N
(
y | Xs, σ2I

)
L (s | λ,J) . (7)

The factor graph in Fig. 1 depicts the interactions between the variables in our model.

3 Approximate inference

Our goal is to compute posterior marginals for sources si as well as scale variables ui and vi in order
to determine source relevance. These marginals are intractable and we need to resort to approximate
inference methods. In this paper we use a deterministic approximate inference method called expec-
tation propagation (EP) [12]. For a detailed analysis of the use of EP in case of the decoupled prior,
which is a special case of our MVL prior, we refer to [16]. EP works by iterative minimizations of
the Kullback–Leibler (KL) divergence between appropriately chosen distributions in the following
way.

We introduce the vector of all latent variables z = (sT ,uT ,vT )T . The posterior distribution on z
given the data y (which is considered fixed and given and therefore omitted in our notation) can be
written in the factorized form

p(z) ∝ t0(z)
∏
i

ti(z) , (8)

where t0(z) ∝ N
(
y | Xs, σ2I

)
N
(
v | 0,J−1/λ2

)
N
(
u | 0,J−1/λ2

)
and ti(z) = ti(si, ui, vi) =

N
(
si | 0, u2

i + v2
i

)
. The term t0(z) is a Gaussian function, i.e., it can be written in the form

exp(zTh0 − zTK0z/2). It factorizes into Gaussian functions of s, u, and v such that K0 has a
block-diagonal structure. Using EP, we will approximate p(z) with q (z) ∝ t0(z)

∏
i t̄i (z), where

the t̄i(z) are Gaussian functions as well.

Our definition of the MVL distribution leads to several computational benefits. Equation (6) intro-
duces 2p auxiliary Gaussian variables (u,v) that are coupled to the si’s by p non-Gaussian factors,
thus, we have to approximate p terms. The multivariate Laplace distribution defined in [5] introduces
one auxiliary variable and couples all the sisj terms to it, therefore, it would lead to p2 non-Gaussian
terms to be approximated. Moreover, as we will see below, the a priori independence of u and v and
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the form of the terms ti(z) results in an approximation of the posterior with the same block-diagonal
structure as that of t0(z).

In each step, EP updates t̄i with t̄∗i by defining q\i ∝ t0(z)
∏
\i t̄j , minimizing KL

(
tiq
\i ‖ q∗

)
with

respect to q∗ and setting t̄∗i ∝ q∗/q\i. It can be shown that when ti depends only on a subset of
variables zi (in our case on zi = (si, ui, vi)) then so does t̄i. The minimization of the KL diver-
gence then boils down to the minimization of KL

(
ti(zi)q\i(zi) ‖ q∗(zi)

)
with respect to q∗(zi)

and t̄i is updated to t̄∗i (zi) ∝ q∗(zi)/q\i(zi). Minimization of the KL divergence corresponds to
moment matching, i.e., q∗(si, ui, vi) is a Gaussian with the same mean and covariance matrix as
qi(zi) ∝ ti(zi)q\i(zi). So, to update the i-th term in a standard application of EP, we would have
to compute q\i(zi) and could then use a three-dimensional (numerical) integration to compute all
first and second moments of qi(zi). Below we will explain how we can exploit the specific charac-
teristics of the MVL to do this more efficiently. For stability, we use a variant of EP, called power
EP [13], where q\i ∝ t̄

(1−α)
i

∏
\i t̄j and KL

(
tαi q
\i ‖ q∗

)
with α ∈ (0, 1] is minimized. The above

explanation of standard EP corresponds to α = 1. In the following we will give the formulas for
general α.

We will now work out the EP update for the i-th term approximation in more detail to show by
induction that t̄i(si, ui, vi) factorizes into independent terms for si, ui, and vi. Since ui and vi play
exactly the same role, it is also easy to see that the term approximation is always symmetric in ui
and vi. Let us suppose that q (si, ui, vi) and consequently q\i (si, ui, vi) factorizes into independent
terms for si, ui, and vi, e.g., we can write

q\i (si, ui, vi) = N (si | mi, σ
2
i )N (ui | 0, ν2

i )N (vi | 0, ν2
i ). (9)

By initializing t̄i(si, ui, vi) = 1, we have q(z) ∝ t0(z) and the factorization of q\i (si, ui, vi)
follows directly from the factorization of t0(z) into independent terms for s, u, and v. That is, for
the first EP step, the factorization can be guaranteed. To obtain the new term approximation, we
have to compute the moments of the distribution qi(si, ui, vi) ∝ N (si | 0, u2

i + v2
i )αq\i(si, ui, vi),

which, by regrouping terms, can be written in the form qi(si, ui, vi) = qi(si | ui, vi)qi(ui, vi) with

qi(si | ui, vi) ∝ N
(
si |

mi(u2
i + v2

i )
ασ2

i + u2
i + v2

i

,
σ2
i (u2

i + v2
i )

ασ2
i + u2

i + v2
i

)
(10)

qi(ui, vi) ∝
(
u2
i + v2

i

)(1−α)/2N
(√
αmi | 0, ασ2

i + u2
i + v2

i

)
×N (ui | 0, ν2

i )N (vi | 0, ν2
i ) . (11)

Since qi(ui, vi) only depends on u2
i and v2

i and is thus invariant under sign changes of ui and vi,
we must have E [ui] = E [vi] = 0, as well as E [uivi] = 0. Because of symmetry, we further have
E
[
u2
i

]
= E

[
v2
i

]
= (E

[
u2
i

]
+ E

[
v2
i

]
)/2. Since qi(ui, vi) can be expressed as a function of u2

i +v2
i

only, this variance can be computed from (11) using one-dimensional Gauss-Laguerre numerical
quadrature [15]. The first and second moments of si conditioned upon ui and vi follow directly
from (10). Because both (10) and (11) are invariant under sign changes of ui and vi, we must have
E [siui] = E [sivi] = 0. Furthermore, since the conditional moments again depend only on u2

i +v2
i ,

also E [si] and E
[
s2i
]

can be computed with one-dimensional Gauss-Laguerre integration. Summa-
rizing, we have shown that if the old term approximations factorize into independent terms for si, ui,
and vi, the new term approximation after an EP update, t̄∗i (si, ui, vi) ∝ q∗(si, ui, vi)/q\i(si, ui, vi),
must do the same. Furthermore, given the cavity distribution q\i(si, ui, vi), all required moments
can be computed using one-dimensional numerical integration.

The crucial observation here is that the terms ti(si, ui, vi) introduce dependencies between si and
(ui, vi), as expressed in Eqs. (10) and (11), but do not lead to correlations that we have to keep track
of in a Gaussian approximation. This is not specific to EP, but a consequence of the symmetries and
invariances of the exact distribution p(s,u,v). That is, also when the expectations are taken with
respect to the exact p(s,u,v) we have E [ui] = E [vi] = E [uivi] = E [siui] = E [sivi] = 0 and
E
[
u2
i

]
= E

[
v2
i

]
. The variance of the scales E

[
u2
i + v2

i

]
determines the amount of regularization

on the source parameter si such that large variance implies little regularization.

Last but not least, contrary to conventional sequential updating, we choose to update the terms t̄i in
parallel. That is, we compute all q\is and update all terms simultaneously. Calculating q\i(si, ui, vi)
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requires the computation of the marginal moments q(si), q(ui) and q(vi). For this, we need the
diagonal elements of the inverse of the precision matrix K of q(z). This precision matrix has the
block-diagonal form

K =

 XTX/σ2 + Ks 0 0
0 λ2J + Ku 0
0 0 λ2J + Kv

 (12)

where J is a sparse precision matrix which determines the coupling, and Ks, Ku, and Kv = Ku

are diagonal matrices that contain the contributions of the term approximations. We can exploit the
low-rank representation of XTX/σ2 + Ks to compute its inverse using the Woodbury formula [7].
The diagonal elements of the inverse of λ2J + Ku can be computed efficiently via sparse Cholesky
decomposition and the Takahashi equation [17]. By updating the term approximations in parallel,
we only need to perform these operations once per parallel update.

4 Experiments

Returning to the source localization problem, we will show that the MVL prior can be used to induce
constraints on the source estimates. To this end, we use a dataset obtained for a mismatch negativity
experiment (MMN) [6]. The MMN is the negative component of the difference between responses
to normal and deviant stimuli within an oddball paradigm that peaks around 150 ms after stimulus
onset. In our experiment, the subject had to listen to normal (500 Hz) and deviant (550 Hz) tones,
presented for 70 ms. Normal tones occurred 80% of the time, whereas deviants occurred 20% of the
time. A total of 600 trials was acquired.

Data was acquired with a CTF MEG System (VSM MedTech Ltd., Coquitlam, British Columbia,
Canada), which provides whole-head coverage using 275 DC SQUID axial gradiometers. A re-
alistically shaped volume conduction model was constructed based on the individual’s structural
MRI [14]. The brain volume was discretized to a grid with a 0.75 cm resolution and the lead field
matrix was calculated for each of the 3863 grid points according to the head position in the system
and the forward model. The lead field matrix is defined for the three x, y, and z orientations in each
of the source locations and was normalized to correct for depth bias. Consequently, the lead field
matrix X is of size 275 × 11589. The 275 × 1 observation vector y was rescaled to prevent issues
with numerical precision.

In the next section, we compare source estimates for the MMN difference wave that have been
obtained when using either a decoupled or a coupled MVL prior. For ease of exposition, we focus
on a spatial prior induced by the coupling of neighboring sources. In order to demonstrate the effect
of the spatial prior, we assume a fixed regularization parameter λ and fixed noise variance σ2, as
estimated by means of the L curve criterion [8]. Differences in the source estimates will therefore
arise only from the form of the 11589 × 11589 sparse precision matrix J. The first estimate is
obtained by assuming that there is no coupling between elements of the lead field matrix, such that
J = I. This gives a Bayesian formulation of the minimum current estimate [18]. The second
estimate is obtained by assuming a coupling between neighboring sources i and j within the brain
volume with fixed strength c. This coupling is specified through the unnormalized precision matrix
Ĵ by assuming Ĵix,jx = Ĵiy,jy = Ĵiz,jz = −c while diagonal elements Ĵii are set to 1−

∑
j 6=i Ĵij .

2

This prior dictates that the magnitude of the variances of the source currents are coupled between
sources.

For the coupling strength c, we use correlation as a guiding principle. Recall that the unnormal-
ized precision matrix Ĵ in the end determines the correlations (of the variances) between sources.
Specifically, correlation between sources si and sj is given by

rij =
(
Ĵ−1

)
ij
/
(
Ĵ−1

) 1
2

ii

(
Ĵ−1

) 1
2

jj
. (13)

For example, using c = 10, we would obtain a correlation coefficient of ri,i+1 = 0.78. Note that this
also leads to more distant sources having non-zero correlations. The positive correlation between

2The normalized precision matrix is obtained through J = diag(Ĵ−1)
1
2 Ĵ diag(Ĵ−1)

1
2 .
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J L C

Figure 2: Spatial coupling leads to the normalized precision matrix J with coupling of neighboring
source orientations in the x, y, and z directions. The (reordered) matrix L is obtained from the
Cholesky decomposition of J. The correlation matrix C shows the correlations between the source
orientations. For the purpose of demonstration, we show matrices using a very coarse discretization
of the brain volume.

neighboring sources is motivated by the notion that we expect neighboring sources to be similarly
though not equivalently involved for a given task. Evidently, the desired correlation coefficient also
depends on the resolution of the discretized brain volume.

Figure 2 demonstrates how a chosen coupling leads to a particular structure of J, where irregularities
in J are caused by the structure of the imaged brain volume. The figure also shows the computational
bottleneck of our algorithm, which is to compute diagonal elements of J−1. This can be solved by
means of the Takahashi equation which operates on the matrix L that results from a sparse Cholesky
decomposition. The block diagonal structure of L arises from a reordering of rows and columns
using, for instance, the amd algorithm [1]. The correlation matrix C shows the correlations between
the sources induced by the structure of J. Zeros in the correlation matrix arise from the independence
between source orientations x, y, and z.

5 Results

Figure 3 depicts the difference wave that was obtained by subtracting the trial average for standard
tones from the trial average for deviant tones. A negative deflection after 100 ms is clearly visible.
The event-related field indicates patterns of activity at central channels in both hemispheres. These
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−14

time (s)
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Figure 3: Evolution of the difference wave at right central sensors and event-related field of the
difference wave 125 ms after cue onset.
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Figure 4: Source estimates using a decoupled prior (top) or a coupled prior (bottom). Plots are
centered on the left temporal source.

Figure 5: Relative variance using a decoupled prior (top) or a coupled prior (bottom). Plots are
centered on the right temporal source.

findings are consistent with the mismatch negativity literature [6]. We now proceed to localizing the
sources of the activation induced by mismatch negativity.

Figure 4 depicts the localized sources when using either a decoupled MVL prior or a coupled MVL
prior. The coupled spatial prior leads to stronger source currents that are spread over a larger brain
volume. MVL source localization has correctly identified the source over left temporal cortex but
does not capture the source over right temporal cortex that is also hypothesized to be present (cf.
Fig. 3). Note however that the source estimates in Fig. 4 represent estimated mean power and thus
do not capture the full posterior over the sources.

Differences between the decoupled and the coupled prior become more salient when we look at the
relative variance of the auxiliary variables as shown in Fig. 5. Relative variance is defined here as
posterior variance minus prior variance of the auxiliary variables, normalized to be between zero
and one. This measure indicates the change in magnitude of the variance of the auxiliary variables,
and thus indirectly that of the sources via Eq. (6). Since only sources with non-zero contributions
should have high variance, this measure can be used to indicate the relevance of a source. Figure 5
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shows that temporal sources in both left and right hemispheres are relevant. The relevance of the
temporal source in the right hemisphere becomes more pronounced when using the coupled prior.

6 Discussion

In this paper, we introduced a multivariate Laplace prior as the basis for Bayesian source localiza-
tion. By formulating this prior as a scale mixture we were able to approximate posteriors of interest
using expectation propagation in an efficient manner. Computation time is mainly influenced by the
sparsity structure of the precision matrix J which is used to specify interactions between sources by
coupling their variances. We have demonstrated the feasibility of our approach using a mismatch
negativity dataset. It was shown that coupling of neighboring sources leads to source estimates that
are somewhat more spatially smeared as compared with a decoupled prior. Furthermore, visualiza-
tion of the relative variance of the auxiliary variables gave additional insight into the relevance of
sources.

Contrary to the MAP estimate (i.e., the minimum current estimate), our Bayesian estimate does not
exactly lead to sparse posteriors given a finite amount of data. However, posterior marginals can
still be used to exclude irrelevant sources since these will typically have a mean activation close to
zero with small variance. In principle, we could force our posteriors to become more MAP-like by
replacing the likelihood term withN

(
y | Xs, σ2I

)1/T
in the limit T → 0. From the Bayesian point

of view, one may argue whether taking this limit is fair. In any case, given the inherent uncertainty
in our estimates we favor the representation in terms of (non-sparse) posterior marginals.

Note that it is straightforward to impose other constraints since this only requires the specification
of suitable interactions between sources through J. For instance, the spatial prior could be made
more realistic by taking anatomical constraints into account or by the inclusion of coupling between
sources over time. Other constraints that can be implemented with our approach are the coupling of
individual orientations within a source, or even the coupling of source estimates between different
subjects. Coupling of source orientations has been realized before in [9] through an `1/`2 norm,
although not using a fully Bayesian approach. In future work, we aim to examine the effect of the
proposed priors and optimize the regularization and coupling parameters via empirical Bayes [4].
Other directions for further research are inclusion of the noise variance in the optimization procedure
and dealing with the depth bias that often arises in distributed source models in a more principled
way.

In [11], fields of Gaussian scale mixtures were used for modeling the statistics of wavelet coefficients
of photographics images. Our approach differs in two important aspects. To obtain a generalization
of the univariate Laplace distribution, we used a multivariate exponential distribution of the scales,
to be compared with the multivariate log-normal distribution in [11]. The Laplace distribution has
the advantage that it is the most sparsifying prior that, in combination with a linear model, still leads
to a unimodal posterior [16]. Furthermore, we described an efficient method for approximating
marginals of interest whereas in [11] an iterative coordinate-ascent method was used to compute the
MAP solution. Since (the efficiency of) our method for approximate inference only depends on the
sparsity of the multivariate scale distribution, and not on its precise form, it should be feasible to
compute approximate marginals for the model presented in [11] as well.

Concluding, we believe the scale mixture representation of the multivariate Laplace distribution
to be a promising approach to Bayesian distributed source localization. It allows a wide range of
constraints to be included and, due to the characteristics of the scale mixture, posteriors can be
approximated efficiently even for very large models.
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