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Abstract

Multi-class object learning and detection is a challenging problem due to the
large number of object classes and their high visual variability. Specialized de-
tectors usually excel in performance, while joint representations optimize sharing
and reduce inference time — but are complex to train. Conveniently, sequential
class learning cuts down training time by transferring existing knowledge to novel
classes, but cannot fully exploit the shareability of features among object classes
and might depend on ordering of classes during learning. In hierarchical frame-
works these issues have been little explored. In this paper, we provide a rigorous
experimental analysis of various multiple object class learning strategies within a
generative hierarchical framework. Specifically, we propose, evaluate and com-
pare three important types of multi-class learning: 1.) independent training of
individual categories, 2.) joint training of classes, and 3.) sequential learning of
classes. We explore and compare their computational behavior (space and time)
and detection performance as a function of the number of learned object classes
on several recognition datasets. We show that sequential training achieves the best
trade-off between inference and training times at a comparable detection perfor-
mance and could thus be used to learn the classes on a larger scale.

1 Introduction

Object class detection has been one of the mainstream research areas in computer vision. In recent
years we have seen a significant trend towards larger recognition datasets with an increasing number
of object classes [1]. This necessitates representing, learning and detecting multiple object classes,
which is a challenging problem due to the large number and the high visual variability of objects.

To learn and represent multiple object classes there have mainly been two strategies: the detectors
for each class have either been trained in isolation, or trained on all classes simultaneously. Both
exert certain advantages and disadvantages. Training independently allows us to apply complex
probabilistic models that use a significant amount of class specific features and allows us to tune
the parameters for each class separately. For object class detection, these approaches had notable
success [2]. However, representing multiple classes in this way, means stacking together specific
class representations. This, on the one hand, implies that each novel class can be added in constant
time, however, the representation grows clearly linearly with the number of classes and is thus also
linear in inference. On the other hand, joint representations enlarge sublinearly by virtue of sharing
the features among several object classes [3, 4]. This means sharing common computations and
increasing the speed of the joint detector. Training, however, is usually quadratic in the number of
classes. Furthermore, adding just one more class forces us to re-train the representation altogether.

Receiving somewhat less attention, the strategy to learn the classes sequentially (but not indepen-
dently) potentially enjoys the traits of both learning types [4, 5, 6]. By learning one class after



another, we can transfer the knowledge acquired so far to novel classes and thus likely achieve both,
sublinearity in inference and cut down training time. In order to scale to a higher number of object
classes, learning them sequentially lends itself as the best choice.

In literature, the approaches have mainly used one of these three learning strategies in isolation.
To the best of our knowledge, little research has been done on analyzing and comparing them with
respect to one another. This is important because it allows us to point to losses and gains of each
particular learning setting, which could focus further research and improve the performance. This is
exactly what this paper is set to do — we present a hierarchical framework within which all of the
aforementioned learning strategies can be unbiasedly evaluated and put into perspective.

Prominent work on these issues has been done in the domain of flat representations [4, 3], where
each class is modeled as an immediate aggregate of local features. However, there is an increasing
literature consensus, that hierarchies provide a more suitable form of multi-class representation [7,
8,9, 10, 11, 12]. Hierarchies not only share complex object parts among similar classes, but can
re-use features at several levels of granularity also for dissimilar objects.

In this paper, we provide a rigorous experimental evaluation of several important multi-class learning
strategies for object detection within a generative hierarchical framework. We make use of the
hierarchical learning approach by [13]. Here we propose and evaluate three types of multi-class
learning: 1.) independent training of individual categories, 2.) joint training, 3.) sequential training
of classes. Several issues were evaluated on multiple object classes: 1.) growth of representation,
2.) training and 3.) inference time, 4.) degree of feature sharing and re-use at each level of the
hierarchy, 5.) influence of class ordering in sequential learning, and 6.) detection performance, all
as a function of the number of classes learned. We show that sequential training achieves the best
trade-off between inference and training times at a comparable detection performance and could
thus be used to learn the classes on a larger scale.

Related work. Prior work on multi-class learning in generative hierarchies either learns separate
hierarchies for each class [14, 15, 16, 10, 17], trains jointly [7, 18, 9, 19, 20, 11], whereas work
on sequential learning of classes has been particularly scarce [6, 13]. However, to the best of our
knowledge, no work has dealt with, evaluated and compared multiple important learning concepts
under one hierarchical framework.

2 The hierarchical model and inference

The hierarchical model. We use the hierarchical model of [13, 21], which we summarize here. Ob-
jects are represented with a recursive compositional shape vocabulary which is learned from images.
The vocabulary contains a set of shape models or compositions at each layer. Each shape model in
the hierarchy is modeled as a conjunction of a small number of parts (shapes from the previous
layer). Each part is spatially constrained on the parent shape model via a spatial relation which is
modeled with a two-dimensional Gaussian distribution. The number and the type of parts can differ
across the shape models and is learned from the data without supervision. At the lowest layer, the
vocabulary consists of a small number of short oriented contour fragments, while the vocabulary at
the top-most layer contains models that code the shapes of the whole objects. For training, we need
a positive and a validation set of class images, while the structure of the representation is learned in
an unsupervised way (no labels on object parts or smaller subparts need to be given).

The hierarchical vocabulary V = (V, E) is represented with a directed graph, where multiple edges
between two vertices are allowed. The vertices V' of the graph represent the shape models and
the edges E represent the composition relations between them. The graph ) has a hierarchical
structure, where the set of vertices V' is partitioned into subsets V1, ..., V?, each containing the
shapes at a particular layer. The vertices {v} }$_; at the lowest layer V! represent 6 oriented contour
fragments. The vertices at the top-most layer V ©, referred to as the object layer represent the whole
shapes of the objects. Each object class C' is assigned a subset of vertices VCO C VO that code the
object layer shapes of that particular class. We denote the set of edges between the vertex layers
V¢ and V!~ with E*. Each edge €4, = vhv! ! in E' is associated with the Gaussian parameters
0%, = 0(e%;) = (1%;, X%;) of the spatial relation between the parent shape v% and its part v} ',
We will use 8% = (6%,): to denote the vector of all the parameters of a shape model v%. The pair
V= (V4 E*) will be referred to as the vocabulary at layer (.



Inference. We infer object class instances in a query image [ in the following way. We follow the
contour extraction of [13], which finds local maxima in oriented Gabor energy. This gives us the
contour fragments F' and their positions X. In the process of inference we build a (directed acyclic)
inference graph g (Z,Q). The vertices Z are partitioned into vertex layers 1 to @) (object layer)
Z = Z'U---UZ9, and similarly also the edges, Q Qlu -UQC. Each vertex z* = (v%, z%) € Z*

represents a hypotheszs that a particular shape v* 6 V* from the vocabulary is present at location z*.

The edges in Q¢ connect each parent hypothesis 2% R to all of its part hypotheses z . The edges in
the bottom layer Q' connect the hypotheses in the first layer Z! with the observations. With S(2)
we denote the subgraph of G that contains the vertices and edges of all descendants of vertex z.

Since our definition of each vocabulary shape model assumes that its parts are conditionally inde-
pendent, we can calculate the likelihood of the part hypotheses z[ ! = (v f_l, zf‘l) under a parent
hypothesis z% = (v%, x R) by taking a product over the 1nd1v1dua1 likelihoods of the parts:

571,x£71 | ’U%,l‘%,@%) = H p(z; it | IR’ e ' Ué,@%i) (1)

e, =1
eR =VRU;

p(v

The term Pri = plat™1 | 2%, vf ™t vl 0%,) stands for the spatial constraint imposed by a vocab-

ulary edge e, Ri between a parent hypothesis zR and its part hypothesis ze_l. It is modeled by a
normal distribution, pr; = N (z!71 — 2% | 0%,), where 0%, = (1%;, ©%,). If the likelihood in (1) is
above a threshold, we add edges between zﬁ and its most likely part hypotheses. The log-likelihood
of the observations under a hypothesis zf{ is then calculated recursively over the subgraph S (z%):

logp(F, X,z [ 25:V) = > logpra+ . logp(F,X|[z}), (2
Zp 2 EE(S(24)) zl EV(S(2%))

where E(S(2%)) and V(S(z%)) denote the edges and vertices of the subgraph S(z%), respectively.
The last term is the likelihood of the Gabor features under a particular contour fragment hypothesis.

3 Multi-class learning strategies

We first define the objective function for multi-class learning and show how different learning strate-
gies can be used with it in the following subsections. Our goal is to find a hierarchical vocabulary
V that well represents the distribution p(I | C) =~ p(F,X | C;V) at minimal complexity of the
representation (C' denotes the class variable). Specifically, we seek for a vocabulary V = U,V* that
optimizes the function f over the data D = {(F,,, X,,, C,,)})_, (N training images):

V* = argmax f(V), where f(V)=L(D|V)-A-T(V) 3)
%
The first term in (3) represents the log-likelihood:
N
L(D|V) = logp(F, X, | C;V) = ZlogZp (Fp, X,z | C; V), (4)
n=1 n=1

while T'(V) penalizes the complexity of the model [21] and A controls the amount of penalization.

Several approximations are made to learn the vocabulary; namely, the vocabulary is learned layer by
layer (in a bottom-up way) by finding frequent spatial layouts of parts from the previous layer [13]
and then using f to select a minimal set of models at each layer that still produce a good whole-
object shape representation at the final, object layer [21]. The top layer models are validated on a
set of validation images and those yielding a high rate of false-positives are removed from ).

We next show how different training strategies are performed to learn a joint multi-class vocabulary.

3.1 Independent training of individual classes

In independent training, a class specific vocabulary V. is learned using the training images of each
particular class C' = ¢. We learn V. by maximizing f over the data D = {(F,,,X,,,C = ¢)}. For
the negative images in the validation step, we randomly sample images from other classes. The joint
multi-class representation V is then obtained by stacking the class specific vocabularies V. together,
V¢ = U. V! (the edges E are added accordingly). Note that V! is the only layer common to all
classes (6 0r1ented contour fragments), thus V! = V1



3.2 Joint training of classes

In joint training, the learning phase has two steps. In the first step, the training data D for all
the classes is presented to the algorithm simultaneously, and is treated as unlabeled. The spatial
parameters @ of the models at each layer are then inferred from images of all classes, and will code
“average” spatial part dispositions. The joint statistics also influences the structure of the models by
preferring those that are most repeatable over the classes. This way, the jointly learned vocabulary
V will be the best trade-off between the likelihood L and the complexity T over all the classes in the
dataset. However, the final, top-level likelihood for each particular class could be low because the
more discriminative class-specific information has been lost. Thus, we employ a second step which
revisits each class separately. Here, we use the joint vocabulary V' and add new models v% to each
layer / if they further increase the score f for each particular class. This procedure is similar to that
used in sequential training and will be explained in more detail in the following subsection. Object
layer V© is consequently learned and added to V for each class. We validate the object models after
all classes have been trained. A similarity measure is used to compare every two classes based on the
degree of feature sharing between them. In validation, we choose the negative images by sampling
the images of the classes according to the distribution defined by the similarity measure. This way,
we discard the models that poorly discriminate between the similar classes.

3.3 Sequential training of classes

When training the classes sequentially, we train on each class separately, however, our aim is to
1.) maximize the re-use of compositions learned for the previous classes, and 2.) add those missing
(class-specific) compositions that are needed to represent class & sufficiently well. Let V.1 denote
the vocabulary learned for classes 1 to k£ — 1. To learn a novel class k, for each layer ¢ we seek a
new set of shape models that maximizes f over the data D = {(F,,, X,,, C = k)} conditionally on
the already learned vocabulary Vf: x—1- This is done by treating the hypotheses inferred with respect
to Vf: x—1 as fixed, which gives us a starting value of the score function f. Each new model vf%

is then evaluated and selected conditionally on this value, i.e such that the difference f(V{, , U

vé) —f (Vf: x_1) is maximized. Since according to the definition in (4) the likelihood L increases

the most when the hypotheses have largely disjoint supports, we can greatly speed up the learning
process: the models need to be learned only with respect to those (F, X) in an image that have a
low likelihood under the vocabulary Vf: x—1» Which can be determined prior to training.

4 Experimental results

We have evaluated the hierarchical multi-class learning strategies on several object classes. Specif-
ically, we used: UIUC multi-scale cars [22], GRAZ [4] cows and persons, Weizmann multi-scale
horses (adapted by Shotton et al. [23]), all five classes from the ETH dataset [24], and all ten classes
from TUD shape2 [25]. Basic information is given in Table 1. A 6-layer vocabulary was learned. !
The bounding box information was used during training.

When evaluating detection performance, a detection will be counted as correct, if the predicted
bounding box coincides with groundtruth more than 50%. On the ETH dataset alone, this threshold
is lowered to 0.3 to enable a fair comparison with the related work [24]. The performance will be
given either with recall at equal error rate (EER), positive detection rate at low FPPI, or as classif.-
by-detection (on TUD shape2), depending on the type of results reported on that dataset thus-far.

To evaluate the shareability of compositions between the classes, we will use the following measure:

1 Z (# of classes that use v%) — 1

deg_share({) = —-
eg-share(() V¢ # of all classes — 1 ’

véEV‘Z

defined for each layer ¢ separately. By “v% used by class C” it is meant that there is a path of edges
connecting any of the class specific shapes V,§ and v%. To give some intuition behind the measure:

"The number of layers depends on the objects’ size in the training images (it is logarithmic with the number
of non-overlapping contour fragments in an image). To enable a consistent evaluation of feature sharing, etc,
we have scaled the training images in a way which produced the whole-shape models at layer 6 for each class.



deg_share = 0 if no shape from layer ¢ is shared (each class uses its own set of shapes), and it is 1
if each shape is used by all the classes. Beside the mean (which defines deg_share), the plots will
also show the standard deviation. In sequential training, we can additionally evaluate the degree of
re-use when learning each novel class. Higher re-use means lower training time and a more compact
representation. We expect a tendency of higher re-use as the number k£ of classes grows, thus we
define it with respect to the number of learned classes:

# of vf% S Vftkil used by ¢
# of all vt € V/, used by ¢,

deg_transfer(k, ¢) = (5)

Evaluation was performed by progressively increasing the number of object classes (from 2 to 10).
The individual training will be denoted by I, joint by .J, and sequential by S.

Table 2 relates the detection performances of I to those of the related work. On the left side, we
report detection accuracy at low FPPI rate for the ETH dataset, averaged over 5 random splits of
training/test images as in [24]. On the right side, recall at EER is given for a number of classes.

Two classes. We performed evaluation on two visually very similar classes (cow, horse), and two
dissimilar classes (person, car). Table 3 gives information on 1.) size (the number of compositions
at each layer), 2.) training and 3.) inference times, 4.) recall at EER. In sequential training, both
possible orders were used (denoted with S1 and S2) to see whether different learning orders (of
classes) affect the performance. The first two rows show the results for each class individually,
while the last row contains information with respect to the conjoined representations. Already for
two classes, the cumulative training time is slightly lower for S than I, while both being much
smaller than that of J.

Degree of sharing. The hierarchies learned in I, J, and S on cows and horses, and J for car-person
are shown in Fig. 2 in a respective order from left to right. The red nodes depict cow/car and blue
horse/person compositions. The green nodes depict the shared compositions. We can observe a
slightly lower number of shareable nodes for S compared to J, yet still the lower layers for cow-
horse are almost completely re-used. Even for the visually dissimilar classes (car-person) sharing is
present at lower layers. Numerically, the degrees of sharing and transfer are plotted in Fig. 1.

Detection rate. The recall values for each class are reported in Table 3. Interestingly, “knowing”
horses improved the performance for cows. For car-person, individual training produced the best
result, while training person before car turned out to be a better strategy for S. Fig. 1 shows the
detection rates for cows and horses on the joint test set (the strongest class hypothesis is evaluated),
which allows for a much higher false-positive rate. We evaluate it with F-measure (to account for
FP). A higher performance for all joint representations over the independent one can be observed.
This is due to the high degree of sharing in J and .S, which puts similar hypotheses in perspective
and thus discriminates between them better.

Five classes. The results for ETH-5 are reported in Table 4. We used half of the images for training,
and the other half for testing. The split was random, but the same for I, J, and S. We also test
whether different orders in S affect performance (we report an average over 3 random S runs).
Ordering does slightly affect performance, which means we may try to find an optimal order of
classes in training. We can also observe that the number of compositions at each layer is higher for
S as for J (both being much smaller than I), but this only slightly showed in inference times.

Ten classes. The results on TUD-10 are presented in Table 5. A few examples of the learned shapes
for S are shown in Fig. 3. Due to the high training complexity of .J, we have only ran J for 2, 5 and
10 classes. We report classif.-by-detection (the strongest class hypothesis in an image must overlap
with groundtruth more than 50%). To demonstrate the strength of our representation, we have also
ran (linear) SVM on top of hypotheses from Layers 1 — 3, and compared the performances. Already
here, Layer 3 + SVM outperforms prior work [25] by 10%. Fig. 4-(11.) shows classification as a
number of learned classes. Our approach consistently outperforms SVM, which is likely due to the
high scale- and rotation- variability of images with which our approach copes well. Fig. 4 shows:
inference time, cumulative training time, degree of sharing (for the final 10-class repr.), transfer, and
classification rates as a function of the number of learned classes.

Vocabulary size. The top row in Fig 4 shows representation size for I, J and S as a function
of learned classes. With respect to worst case (I), both J and S have a highly sublinear growth.
Moreover, in layers 2 and 3, where the burden on inference is the highest (the highest number of



inferred hypotheses), an almost constant tendency can be seen. We also compare the curves with
those reported for a flat approach by Opelt et al. [4] in Fig 4-(5). We plot the number of models at
Layer 5 which are approximately of the same granularity as the learned boundary parts in [4]. Both,
J and S hierarchical learning types show a significantly better logarithmic tendency as in [4].

Fig 4-(6) shows the size of the hierarchy file stored on disk. It is worth emphasizing that the hierarchy
subsuming 10 classes uses only 0.5Mb on disk and could fit on an average mobile device.

50 classes. To increase the scale of the experiments we show the performance of sequential training
on 50 classes from LabelMe [1]. The results are presented in Fig. 5. For I in the inference time plot
we used the inference time for the first class linearly extrapolated with the number of classes. We
can observe that .S achieves much lower inference times than 7, although it is clear that for a higher
number of classes more research is needed to cut down the inference times to a practical value.

Detection rate: JOINT cow+horse dataset Degree of sharing / re-use: cow-horse Degree of sharing / re-use: car-person

i ~@- Joint training
. W 1 - _ | | -o- sequential 1: car + person
1 —A— Sequential 2: person + car|

F-measure
°
&
degree of sharing
cocooooooo
chNBRnB B0 r
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—@— Joint training
—B- Sequential 1: cow + horse
—A— Sequential 2: horse + car
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learning type layer layer

Figure 1: From left to right: 1.) detection rate (F measure) on the joint cow-horse test set. 2.) degree of
sharing for cow -horse, 3.) car-person vocabularles 4.) an example detectlon of a person and horse

/\/\_\ /\”/\

OO o000

Figure 2: Learned 2-class vocabularies for different learning types (the nodes depict the compositions vk, the
links represent the edges e, between them — the parameters 8° are not shown). From left to right: cow-horse
hierarchy for 1.) I, 2.) J, 3.) S1, and 4.) car-person J. Green nodes denoted shared compositions.

5 Conclusions and discussion

We evaluated three types of multi-class learning strategies in a hierarchical compositional frame-
work, namely 1.) independent, 2). joint, and 3.) sequential training. A comparison was made
through several important computational aspects as well as by detection performance. We conclude
that: 1.) Both joint and sequential training strategies exert sublinear growth in vocabulary size (more
evidently so in the lower layers) and, consequently, sublinear inference time. This is due to a high
degree of sharing and transfer within the resulting vocabularies. The hierarchy obtained by sequen-
tial training grows somewhat faster, but not significantly so. 2.) Training time was expectedly worst
for joint training, while training time even reduced with each additional class during sequential
training. 3.) Different training orders of classes did perform somewhat differently — this means we
might try to find an “optimal” order of learning. 4.) Training independently has mostly yielded the
best detection rates, but the discrepancy with the other two strategies was low. For similar classes
(cow-horse), sequential learning even improved the detection performance, and was in most cases
above the joint’s performance. By training sequentially, we can learn class specific features (yet
still have a high degree of sharing) which boost performance. Most importantly, sequential training
has achieved the best trade-off between detection performance, re-usability, inference and training
time. The observed computational properties of all the strategies in general, and sequential learning
in particular, go well beyond the reported behavior of flat approaches [4]. This makes sequential
learning of compositional hierarchies suitable for representing the classes on a larger scale.
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Figure 3: A few examples from the learned hierarchical shape vocabulary for S on TUD-10. Each shape in
the hierarchy is a composition of shapes from the layer below. Only the mean of each shape is shown.

method size on disk | classf. rate
Stark et al.[25] / 44%
Level 1 + SVM 206 Kb 32%
Level 2 + SVM 3,913 Kb 44% train. time | infer. time size of representation
Level 3 + SVM 34,508 Kb 54% ) ) L2 | L3 L4 L5
Independent 1,249 Kb 1% 207 min 12.2 sec 74 | 96 | 159 | 181
Joint 408 Kb 69% 752 min 2.0 sec 14 23 39 59
Sequential 490 Kb 1% 151 min 2.4 sec 9 21 49 76
Table 5: Results on the TUD-10. Classification obtained as classification-by-detection.
Growth of representation Growth of representation Growth of representation Growth of representation
Layer 2 T Layer 3 10| Layer 4 Layer 5
s 60l -0-independent go[| ~©~independent -0-independent 150[ -~ independent
S 50| —A-joint —A-joint -A-joint A joint
& |~V-sequential ~V-sequential 100 - sequential -¥-sequential
g 40 o 100
g0 40
E 20, 50 50
N 20|
@
1(* ! p
1 2 3 4 5 6 7 9 10 1 2 3 4 5 6 7 9 10 1 2 3 4 5 6 7 9 10 1 2 3 4 5 6 7 8 9 10
number of classes number of classes number of classes number of classes
Growth of representation Inference time per image Size on disk Cumulative training time
500 ;ﬁszg:ﬁ;&m B -0-independent g 1400 é 200
S | -ajoint o tof|A-joint Lo ~0-independent o
g 400 -¥- sequential ﬁ sl “V- sequential % 1000 —Ajoint g 150
@ o c v tial o
égoo g 6 g 800 %iﬂ:?; TSVM é
5 3 o —-Layer 3 + SVM @ 100
s g, 8 © 5
P k] g 400 2
& 100 £ 5 X 2,00 E * -o-indepen
3 § -v-sequential
2 3 4 5 6 7 2 I 2 4 6 8 10 2 4 6 8 1 2 4 6 8 10
number of classes number of classes number of classes number of classes
Degree of sharing: TUD Degree of transfer per layer Classification rate
100
1 — — —
ogé'\ g,; _.—'0 g \0?)‘_2:_’8:_4 < 9
o 5 - COA £
0.8 £ 0] ! o
‘gg: ;:;0'5 A N s 70
5 Sost . -B-Layer1| ®
o 04 1 Lo4 L -0-Layer 2 & 0|
503 <3 h @
s 0.2 o3 p, - Layer3| & Xsequenua\
02}y, -A-Layer4| O 50 SVM on Layer 2
0:, ? ;C:Zﬁ;a“."a\" galphabellcal order] 0474y ~v-Layer 5 —8-SVM on Layer 3
1 2 3 4 5 9 10 2

2 3 4 5 6 7 8 4 6
laver number of learnt classes number of classes

Figure 4: Results on TUD-10. Top: (1-4) repr. size as a function of the number of learned classes. Middle:
5.) repr. size compared to [4], 6.) size of hierarchy on disk, 7.) avg. inference time per image, 8.) cumulative
train. time. Bottom: degree of 9.) sharing and 10.) transfer, 11.) classif. rates, 12.) example detection of cup.
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Figure 5: Results on 50 object classes from LabelMe [1]. From left to right: Size of representation (number of
compositions per layer), inference times, and deg_transfer, all as a function of the number of learned classes.
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