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This note contains supplemental material for [3].

Approximating Messages and Covariances

On the scale of interest here, Kalman smoothing discussed in [3, Sect. 3] cannot be implemented
exactly. Readers familiar with approximate computation in Gaussian (Markov) random fields will
appreciate the difficulties here: while X and B are structured, so that matrix-vector multiplica-
tions (MVMs) can be computed rapidly, the overall model does not have locally connected MRF
structure1. Moreover, our problem does not come with a single static Gaussian MRF with close
to stationary potentials, but with a sequence of Q(u|y) fitted to a posterior with significantly non-
Gaussian statistics (edges in the image, etc).

In this section, we show how message passing and marginal covariance computations can be approx-
imated by the Lanczos algorithm [1]. The underlying idea is PCA: if we can efficiently determine
the l� ñ smallest eigenvalues Λ and eigenvectors U of a precision matrix A, the PCA approxima-
tion of A−1 is UΛ−1UT , capturing most of the covariance across all matrices of rank l. Matrices A
encountered here have close to linear spectral decay, so the Lanczos method can be used to approx-
imate PCA [3, Sect. 5.1]. At the cost of k MVMs with A, this algorithm results in A = QTQT ,
Q ∈ Rñ×k orthonormal (where ñ = 2n for complex-valued data), T ∈ Rk×k tridiagonal, with
extremal eigenvalues (largest and smallest) close to eigenvalues of T. Corresponding approximate
eigenvectors (Ritz vectors) can be determined from Q and an eigendecomposition of T. Lanczos
approximations A−1 ≈ QT−1QT , log |A| ≈ log |T| are therefore closely related to PCA. For
Lanczos, eigenvectors from both ends of the spectrum are used. Empirically, k is a small multiple
of l. If desired, eigenvalue convergence can be tested within the Lanczos method, which could be
stopped once a desired number of smallest eigenvalues have been obtained. In experiments pre-
sented here, we instead run Lanczos for a fixed number of iterations. As shown in [4], the Lanczos
variance estimator z[k] := diag−1(BQT−1QT BT ) has the property that z[k],j ≤ z[k+1],j ≤ . . . zj

for all j and k: it is monotonically increasing. Lanczos approximations underestimate covariance in
general.

In order to efficiently implement Gaussian message passing, we will use Lanczos low rank approx-
imations Ãt→ = Qt→Tt→QT

t→, Qt→ ∈ Rñ×km (km Lanczos steps). This factorization is aligned
with common “square root” Kalman filter implementations [5]. Recalling eq. 3 in [3], simple algebra
results in

Mt→ =M(Ãt→,Γ
−1
t→) = Qt→

(
T−1

t→ + QT
t→Γt→Qt→

)−1
QT

t→ = Vt→V T
t→, Vt→ ∈ Rñ×km ,

computed from Qt→, Tt→ in O(nk2
m) using the Cholesky decomposition of T−1

t→ + QT
t→Γt→Qt→

(based on which log |Ãt→ + Γ−1
t→| is computed as well, as part of the log |A| estimate). Kalman

1In fact, prior and likelihood potentials both have MRF structure, but in different domains (image and
Fourier), which are densely and nonlocally coupled.
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filtering is approximated by iterating between message matrix computations and Lanczos runs to
determine Q(t+1)→, T(t+1)→ for the precision matrix Ã(t+1)→ = At+1 + Vt→V T

t→. A Ã(t+1)→-
MVM costs one At+1-MVM plus O(nkm). Messages passed from one node to the next are of
size ñ ·km. Once all messages are computed, node variances (or design scores) are approximated by
running Lanczos on Ãt = At+V(t−1)→V T

(t−1)→+V←(t+1)V
T
←(t+1) for kc iterations. Pair variances

VarQ[st→|y] are estimated by running Lanczos on vectors of size 2ñ (say for kc/2 iterations; the
precision matrix is given in [3, Sect. 3]. Again, generic single slice code can be used to run all these
operations, simply extending At-MVM code by appending low rank message matrix MVMs.

What about parallelization? Message passing along a chain is a serial operation. In two-filter
smoothing, the forward and backward pass can be run in parallel. To avoid communication, each
pass is computed on a single processor, sending messages to others dedicated to marginal covariance
computation (which can start once left and right messages are available for a node). Global crite-
rion evaluation requires collecting log |A| parts from messages and node covariances. kc should be
larger than km, because node covariance computations can be done independently in parallel, and
resulting Lanczos representations do not have to be communicated. Note that the Lanczos algorithm
is more difficult to run than linear conjugate gradients. Beside the MVM cost, it runs up O(nk)
storage and O(nk2) extra computation: the dense Q has to be stored, and each new column has to
be orthogonalized against the others (due to intrinsic numerical problems, orthogonality is rapidly
lost without re-orthogonalization). Here, and also to speed up MVMs with design matrices Xt,
parallelization on the fine-grained level of commodity graphics hardware should be used. Deflation
of new columns to Q is trivial to parallelize, and FFT implementations for graphics hardware are
publicly available.

Details for Experimental Setup

In this section, we provide further details for the experimental setup in [3, Sect. 5.2]. We use
sagittal head scan data of resolution 64 × 64 in-plane, 32 slices, acquired on a Siemens 3T scanner
(phase encode direction anterior-posterior). Preprocessing is done as in [4]. All designs below
contain the 8 lowest-frequency encodes. A low-frequency phase map is obtained from this data by
inverse FFT, then divided out. Phase compensation is commonplace in MRI. In the context of sparse
reconstruction, strong phase contributions reduce sparsity, and are best filtered out beforehand. Note
that our simple compensation method is purely postprocessing: no additional phase encodes have to
be acquired.

The sparsity prior is constructed as in [4, 2], then lifted to complex values as detailed in [3]. Borig
consists of two parts: an orthonormal wavelet transform, and the 2D image gradient transform.
Corresponding Laplace parameters are τa (wavelet) and τr (gradient). The imaginary part penalties
of strength τi and between-slices penalties of strength τc are described in [3].
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