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In this document we report some of the calculations and proofs omitted from the main paper. Refer-
ences to equations and theorems in the main paper are in boldface.

1 Thresholding algorithm

In the following we letCij ≡ EG,θ{xixj} where expectation is taken with respect to the Ising model
(1).

Before proving Theorem1.1we start with an easy related lemma.

Lemma 1.0. If G is a tree, andτ(θ) = (tanh θ + tanh2 θ)/2, then

nThr(τ)(G, θ) ≤ 8

(tanh θ − tanh2 θ)2
log

2p

δ
. (1)

Proof. (Lemma 1.0) IfG is a tree thenCij = tanh θ for all (ij) ∈ E andCij ≤ tanh2 θ for all
(ij) /∈ E. The probability thatThr(τ) fails is

1 − Psucc = Pn,G,θ{Ĉij < τ for some(i, j) ∈ E or Ĉij ≥ τ for some (i, j) /∈ E} . (2)

Let τ = (tanh θ + tanh2 θ)/2. Applying Azuma-Hoeffding inequality tôCij followed by union
bound over the edges, we bound this probability by

Psucc ≥ 1 − p2 e−
1

8
n(tanh θ−tanh2 θ)2 . (3)

Imposing the right hand side to be larger thanδ proves our result.

Proof. (Theorem1.1) We will prove that, forθ < arctanh(1/(2∆)), Cij ≥ tanh θ for all (i, j) ∈ E
andCij ≤ 1/(2∆) for all (ij) /∈ E. In particularCij < Ckl for all (i, j) /∈ E and all(k, l) ∈ E .
The theorem follows from this fact via union bound and Azuma-Hoeffding inequality as in the proof
of Theorem 1.0.

The boundCij ≥ tanh θ for (ij) ∈ E is a direct consequence of Griffiths inequality: compare the
expectation ofxixj in G with the same expectation in the graph that only includes edge (i, j).

The second bound is derived using the technique of[16], i.e., boundCij by the generating function
for self-avoiding walks on the graphs fromi to j. More precisely, assumel = dist(i, j) and denote
by Nij(k) the number of self avoiding walks of lengthk betweeni andj on G. Then[16] proves
that

Cij ≤
∞∑

k=l

(tanh θ)kNij(k) ≤
∞∑

n=l

∆k−1(tanh θ)k ≤ ∆l−1(tanh θ)l

1 − ∆tanh θ
≤ ∆(tanh θ)2

1 − ∆tanh θ
(4)

If θ < arctanh(1/(2∆)) the above impliesCij ≤ 1/(2∆) which is our claim.
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Proof. (Theorem1.2) The theorem is proved by constructingG as follows: sample a uniformly
random regular graph of degree∆ over thep− 2 vertices{1, 2, . . . , p− 2} ≡ [p− 2]. Add an extra
edge between nodesp− 1 andp. The resulting graph is not connected. We claim that forθ > K/∆
and with probability converging to1 asp → ∞, there existi, j ∈ [p − 2] such that(i, j) /∈ E and
Cij > Cp−1,p. As a consequence, thresholding fails.

ObviouslyCp−1,p = tanh θ. Choosei ∈ [p − 2] uniformly at random, andj a node at a fixed
distancet from i. We can computeCij asp → ∞ using the same local weak convergence result
as in the proof of Lemma3.3. Namely,Cij converges to the correlation between the root and a leaf
node in the tree Ising model(16). In particular one can show that

lim
p→∞

Cij ≥ m(θ)2 , (5)

where m(θ) = tanh(∆h∗/(∆ − 1)) and h∗ is the unique positive solution ofh = (∆ −
1) atanh {tanh θ tanhh}.

The proof is completed by showing thattanh θ < m(θ)2 for all θ > K/∆.

2 Regularized logistic regression

Proof. (Lemma3.1) We outline here the upper bound on the termRn.

Sinceθ̂SC = 0 an application of the mean value theorem yields|[Rn]j | ≤ 2∆||θ̂S − θ∗S ||22. Now
σmin(Q∗) ≤ 1 so the eventE guarantees thatσmin(Qn∗) ≤ 2. Using Lemma 3 from[7] we can
write

||θ̂S − θ∗S ||2 ≤ 1

∆3/2



1 −
√

1 − λ
8∆2

Cmin
(1 + ||W

n
S

λ
||∞)



 . (6)

If E holds we can assume without loss of generality||W
n

S

λ ||∞ < 1 and since1 −
√

1 − x ≤ x, x ∈
[0, 1] the theorem’s assumption onλ makes both ∆

Cmin

||R
n

S

λ ||∞ and|R
n

v

λ | smaller thanǫ/8.

Proof. (Lemma3.3) We outline here some of the calculations with respect to thetree model(16). An
important property that follows from the fixed point equation h = (∆ − 1) atanh {tanh θ tanh h}
is that, ifg(x

T(t)) is a function of the variables inT(t) then

ET(t),θ,+{g(X
T(t))} = ET(t+1),θ,+{g(X

T(t))} , , (7)

with the obvious identification ofT(t) as a subtree ofT(t + 1).

Let r be a uniformly random vertex inG and i 6= j two neighbors ofr. Using the local weak
convergence property(17)with t = 1 we get

lim
p→∞

(Q∗

SS)ii ≡ a = ET(1),θ,+

( 1

cosh2 θM

)
, (8)

lim
p→∞

(Q∗

SS)ij ≡ b = ET(1),θ,+

( XiXj

cosh2 θM

)
, (9)

whereM ≡
∑

i∈∂T(1) Xi is the sum of the variables on the leaves of a depth1 tree, andi, j ∈ ∂T(1).
Let c andd be defined by

lim
p→∞

(Q∗

SS
−1)ii ≡ c , (10)

lim
p→∞

(Q∗

SS
−1)ij ≡ d . (11)

Finally, for r′ at distancet from r, consider the∆-dimensional vector in

lim
p→∞

(Q∗

ScS)r′ = FS(t) . (12)

It can be shown that

FS(t) = ET(1),θ,+(Xr′)ET(1),θ,+

( Xi

cosh2 θM

)
+ ot(1) = f + ot(1) , (13)
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wherer′ is the root of a first tree, andi ∈ ∂T(1) is a leaf of the second tree. In particularFS(t) has,
for larget, asymptotically equal entries.

The final result is obtained by computing the quantitiesa, b, c, d, f .
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