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1 Introduction

This supplementary material provides additional inforimragbout outcp BGe model, the MCMC
simulations and the empirical results, which for spacerig&ins could not be included in the main
paper. The most recent version of this supplementary nahizan be downloaded from the follow-
ing website: http://www.bioss.ac.ukdirk/papers/NIPS09/, and it might contain extra material o
revised sections added after the NIPS submission deadline.notation in the current version of
the supplementary material follows [1], which deviateglsliy from the main paper. The following
seven sections 2 to 8 are organized as follows: In Section prede details about th&Ge
scoring metric for static Bayesian networks as develope@éiger and Heckerman [1]. ThBGe
scoring metric for dynamic Bayesian networks is describedatail in Section 3. Section 4 is an
extended version of the methodology section of our main papection 5 provides some details
on the four competing models: The focus is on &)/ model of Grzegorczyk et al. [5] and the
Gaussian mixture model developed by Ko et al. [8]. In Secfiame describe how we generated
the synthetic network data for the comparative evaluationys presented in the main paper. In
Section 7 we give all implementation details, such as choiitgperparameters, MCMC simulation
lengths, convergence diagnostics, etc.. Finally, in 8adiwe provide some additional figures and
interpretations of the empirical results that could — dusgtace restrictions — not be included in the
main paper.

2 The Gaussian BGe scoring metric for static Bayesian networks

This section describes the linear Gaussian BGe scoringa{@&ayesian metric for Gaussian net-
works having score equivalence) for static Bayesian ndtsvas developed by Geiger and Hecker-

man [1]. Given a data s& with m observations of the variable$,, ..., Xy:
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so thatD,, ; denotes thgith realization of thenth nodeX,,, and thejth column ofD: D ; =
(D1,,--.,Dn,;)T is thejth realization vector of the variables. The Gaussian BGeehassumes
that the observation vectof® ; (j = 1, ...,m) are a random sample from a multivariate Gaussian
distribution V/(fZ, ¥) with an unknown mean vectgi and an unknown covariance mattix The
prior joint distribution of 7 andW = X~! is supposed to be the normal-Wishart distribution, that
is, the conditional distribution ofi given W is N (fio, (v - W)~1) with v > 0, and the marginal
distribution of W is a Wishart distribution witle > N + 1 degrees of freedom and prior matfi:

1
W(a,To) = c(n, a)|T0\a/2|W|(a_”_1)/2 exp(—§tr(T0W)) @)

wheretr(Tp W) is the sum of the diagonal elementsigiV, and
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The conditiona. > N + 1 ensures that the second moments of the posterior distibatie finite
(see also Eq. (26) in [1]). Geiger and Heckerman show thatniduginal likelihoodP(D|G) of the

dataD given a graphg can then — under fairly weak conditions of parameter inddpane and
parameter modularity — be computed in closed form. We define:
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is the mean of then realization vectors and
m
SD,m = Z(D.,j - Dm) : (D.,j - D'rn)T (6)
j=1

To, po, o, andv are hyperparameters of the normal-Wishart prior and halse gpecified in advance.
Ty is anN-by-N matrix, g is an/N-by-1 column vector, and anda are 1-dimensional and usually
referred to as total prior precision parameters.

The marginal likelihood can be computed as follows ([1]):
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whereX,, is thenth variable,r,, is the parent set aX,, in the graphg, DX~} andD{™} are the
data submatrices corresponding to the realizations of #hiaies in the set§X,,, ,,} and{x,}
only, andGp({X,,m,}) andGr(m,) correspond to so-callefilll graphsfor the variable subsets
{X,,n,} and{m,}, that is, to subgraphs with the maximal number of edges ddhkaubgraphs
do not impose any independence restrictions on these sutifsedriables.

The marginal likelihood of the data subset>} ¢ D corresponding to the: realizations of the
NT-dimensional subsef C {Xi,..., Xy} of the N variables given a full grap(S) for the
sub-domainS can be computed as follows ([1]):

o NT/2 T
P(D|Gr(S)) = <2w>3'{v+vm} e ®)
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wheredet(T') anddet (T3 ,,,) denote the determinants of the submatri€gsandT’3 ,,, consisting

only of thoseN T rows and columns that correspond to variables in the suhsEp was defined in
Eqg. (4), and:(NT, o) andc(N', o + m) can be computed with Eq. (3).



3 The Gaussian BGe scoring metric for dynamic Bayesian networks

We now consider the case that instead of independent obEgrvatime series data have been
collected for the domain{X;(¢),... Xn(t))t=1,...m, and that we have a (1st-order) Markovian
dependence structure. In this case, dynamic Bayesian fet{iDBNs) can be employed. In DBNs
each edge corresponds to an interaction with a time delayg. forr = 1 an edge pointing from
X, to X; means that the realizatian;(¢) of X; at time pointt is influenced by the realization
x;(t — 1) of X; at the previous time poirit— 1. This can be taken into consideration in the context
of the Gaussian BGe model by building new data matrices — onedch domain variable — from
the original data matrix of sizé&'-by-m given in Eq. (1). For dynamic data the columns do not
represent independent (steady-state) observationstthheolumn of D is the realization of the
variables at time point (¢t = 1,...,m). We note that the score equivalence aspect ofBli&
model is not required for dynamic Bayesian networks, beeadge reversals are not permissible.
However, formulating the models in terms of tB& e score is advantageous in case one intends to
adapt the framework proposed in the main paper to non-ligedic Bayesian networks along the
lines of [8].

In principle, there are two alternatives which can be usad,iadepends on whether or not 'direct
feedback-loops’, that is edges having the same node amgtartd end point, should be allowed in
the network. Here, we allow for 'direct feedback-loops’dame build the followingV matrices of
size(N + 1)-by-(m — 1) from the (time series) data matrix given in Eq. (1) :
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n =1,...,N. Thatis, we obtairD(n) by deleting the last column @ and adding a novel row

(Dn,2s---,Dn.m), 1.e. thenth row of D shifted leftwards by 1, as th@Vv + 1)-th row. We can
identify the(N + 1)-th row with a new domain variabl& ;. This new variable is theth domain
variable with a time shift of size = 1. We note that the novel data matricE¥n) consist of
observations fortV + 1 domain variables, i.e. the hyperparametBysand . are of the form of an
(N + 1)-by-(N + 1) matrix and an(N + 1)-by-1 column vector, respectively. As before we can
compute the matrif’s,, for each data se®(n), and we replace Eq. (7) by:

o gy = T PO G (X))
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and Eq. (8) by:
AR v i c(N',a)
P(D(n)°IGr(S)) = (2m) " = - {er(ml)} "¢(NT,a+ (m—1))
at(m=1)

det(TO ) dPt(TD(z) (m— 1))7 2

where Gr(S) is a full graph for the domain variable subsgtof cardinality N and 7y and

TD(H) (m—1) @re sub-matrices as explained in Section 2.

If we haved independent (time series) data s&s, ..., D¢ where D" is an N-by-m,, matrix
consisting ofm,, time-dependent realizations of thé variables andv = 1,...,d, then we can
build the N matrices:D* (i) of dimension(\V + 1)-by-(m,, — 1), =1,..., N, independently for
eachw, w = 1,...,d, using Eq. (9). Afterwards we can merge thelata setD*(n),..., D% (n)
column-wise to one single data sg2A%%(n) = (D'(n),...,D%(n)) of dimension(N + 1)-by-
S¢ _ (my — 1) for each variablen = 1,...,N. Using the combined data s&AZZ(n) for

w=1



computing local scores of the variablé, ensures that the realization &f, at the first time point
t = 1 of the wth data set segment, symbolicall;";, has no relation with the last realizations

of its parent nodes,, in the preceding data segmeRt’—!, symbolically: DV~ P That is,

T, M (w

by adding shifted rows as thgv + 1)th row to each data segmeBt” independentlyith Eq. (9)
before merging the resulting data sets it is taken into agtcthat the gene expression values at the
first time point of a time series segment have no relation thithexpression values at the last time
point of the preceding data segment. Therefore, as thenmecgparent node realizations for the first
time point of each data segmeRt’, the first time point of each data segment cannot be scoresl. Th
marginal likelihood in Eqn. (2) and (3) of the main paper havbe replaced by:

P(DIG) = /P(D|g,0) (010)d6 H‘I’ DG (11)
d my
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whereD]» := {(Dy;, Dy ;1) : 2 <t < my, 1 < w < d} consists of the subsets of tHedata
segments pertaining to nodfé1 and parent set,,.

This framework can straightforwardly be applied to the cgB®odel, in that columns of the matrix
DALL(n) are allocated to different components of the underlyingtorxmodel via a change-point
process. As a very simple illustration, consider two timaese{ X (1), X (2), X(3), X (4)} and

{X(1),X(2),X(3)}, which we want to concatenate. We consider a simple DBN stingiof only
one domain nod& with a feedback loop back onto itself. Matix*>%(n) is given by

(XM X@) X3) K1) X
Dt = (3 ¥ X X ¥ ) a3)

X(4)
X(1)
a two component mixture model, the columns of this matrix assigned to one of
two components via a change-point process. Hence, we geffoll@ving sub-matrices:

X(1) X(2) X(3) X1 X2 X(1) X(2) X@3) X(1) X2
X2 )\ X3) X(4) X(©2) X(3) ’ X2 X3 )\ x4 X2 X3 ’

where we note that the colum has to be excluded, as explained above. For

More general and to be consistent with the mathematicatinatathat were used in the main paper
we note that we can alternatively treat these merged dagds€t”(n) (n = 1,..., N) as if they

were extracted from one single time seri@d"% = (D', ..., D%) with 3¢ _, m,, time points. It
has then to be taken into account that the boundary timegibif)f, | andD'y”fr ! of two neighbouring
data sets in the sequen®é' "L = (D!,..., D) are unrelated.

More generally and so as to be consistent with the matheatatitation that was used in the main
paper, we note that we can alternatively treat these mergtds#tsD4>%(n) (n = 1,...,N) as

if they were extracted from one single time ser@é-L = (D!,...,D%) with 3¢ _ m,, time
points. It has then to be taken into account that the bountifagy pointsD*,, | ande{’ﬁ L of two
neighbouring data sets in the sequeficé"” = (D!, ..., D?) are unrelated.

In terms of ourcp BGe model this means that we have an allocation mai}-~ of latent variables
VALL(t) for DAL = (DY, ... DY) whereV,ALL(t) = k means that théth realizationDALE of

n,t



X, (2<t< Y% _ m,) is allocated to thé:th mixture component. In this context we note that

the realization of theth time point inD4LL corresponds to theth realization in data segmet?
where

g =1+maz{uc{0,. .. d}|lt—> my, >0} (14)
w=1
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There are no realizations for the potential parent nodelefitst time pointsD{l, . Df{l. There-
fore, the time points € {1, (m1 +1),(m1 +ma+1),...,(m1+ma+ ... + mg_1 + 1)A}, which
correspond to the first points of the time series, are reduinidethe allocation matrixv 4%~ (and
the latent variable¥’ A% (t) (n = 1,..., N)). We therefore left thesé realizations out, which

reduces the number of columns G LL tom 4 = ny:l(mw —1).

4 Methodology

4.1 The dynamic BGe network (duplicated from the main paper)

DBNs are flexible models for representing probabilisti@tiginships between interacting variables
(nodes)X,..., Xy via a directed graplg. An edge pointing fromX; to X; indicates that the
realization ofX; at time pointt, symbolically: X ;(¢), is conditionally dependent on the realization
of X; attime pointt— 1, symbolically: X;(¢—1). The parent node set of nodg, in G, 7,, = 7,,(G),

is the set of all nodes from which an edge points to n&gein G. Given a data seb, whereD,, ;
andD(,, ¢ are thetth realizationsX, () andn,(t) of X,, and~,, respectively, and <t < m
represents time, DBNs are based on the following homogenklaukov chain expansion:

N m
P(DIG,8) = [T [T P(Xu(t) = Puslma(t = 1) = Dr, 1), 0n) (15)
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where @ is the total parameter vector, composed of node-specifieestibrsd,,, which specify
the local conditional distributions in the factorizatioftom Eg. (15) and under the assumption of
parameter independend®(0|G) = [[,, P(6,|G), the marginal likelihood is given by

N

P(D|G) = /P(DIQ,B)P(@Ig)dt9 =[] w(D;.9) (16)
n=1
U(D™,G) = / HP(Xn(t) = Dys|mnlt — 1) :D(w_1>7en)P(en\g)d0n 17)
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where D" := {(Dn,Dx,—1) : 2 < t < m} is the subset of data pertaining to nodeg,

and parent set,,. We choose a linear Gaussian distribution for the local @@mrdhl distribution
P(X, |7, 0,) in Eq.(15). Under fairly weak regularity conditions dissasd in [1] (parameter mod-
ularity and conjugacy of the pridy, the integral in Eqg. (17) has a closed form solution, givgn b
Eqg. (24) in [1]. The resulting expression is called the BGaret

The conjugate prior is a normal-Wishart distribution. For the presenystuelchose the hyperparameters
of this distribution maximally uninformative subject to the regularity conditidissussed in [1].

2The score equivalence aspect of the BGe model is not requiredBbdisDbecause edge reversals are not
permissible. However, formulating our method in terms of the BGe scadvantageous when adapting the
proposed framework to non-linear static Bayesian networks along thefliigg.



4.2 The non-stationary dynamic change-point BGe model (cpBe) (duplicated from the
main paper)

To obtain a non-stationary DBN, we generalize Eg. (15) wittode-specific mixture model:
N m K,

PG, V. K,0) = [T [T T] P(xu() =D

n=1t=2k=1

NON
(t=1) = Dir, 11,05 (18)

wheredy, (1), is the Kronecker deltaV is a matrix of latent variable¥, (t), V,,(t) = k indi-
cates that the realization of nodg, at timet, X,,(t), has been generated by thth component

of a mixture withC,, components, ani& = (K4,...,K,). Note that the matriv divides the
data into several disjoined subsets, each of which can lzgded as pertaining to a separate BGe
model with parameter8” . The vectorsV,, are node-specific, i.e. different nodes can have different
break-points. The probability model defined in Eq.(18) ieefvely a mixture model with local
probability distributionsP(X,,|7,,,0%) and it can hence, under a free allocation of the latent vari-
ables, approximate any probability distribution arbiisaclosely. In the present work, we change
the assignment of data points to mixture components frore@dilocation to a change-point pro-
cess. This effectively reduces the complexity of the latent shte space and incorporates our prior
belief that, in a time series, adjacent time points are yikelbe assigned to the same component.
From Eq. (18), the marginal likelihood conditional on thtela variablesV is given by

N K,

P(D|G. V. K)= / P(DIG, V. K,0)P©0)d0 = ] [[ ¥(D5 [k, V., 0) (19)
n=1k=1

(D™ [k, V] / HP = Dy 4|t — 1) = Dim, o) 0’“) Ok b9k G)d0)20)

Eq. (20) is similar to Eq. (17), except that it is restrictedl the subsetD-[k,V,] :=
{(DntsDr, 1-1) : Vo(t) = k,2 < t < m}. Hence when the regularity conditions defined in
[1] are satisfied, then the expression in Eq.(20) has a clfied solution: it is given by Eq. (24) in
[1] restricted to the subset of the data that has been asbkigrteekth mixture component (okth
segment). The joint probability distribution of the propdscpBGe model is given by:

P(G,V,K,D) = P(D|G,V,K)-P(G) P(VIK)-P(K)
N Kn

= PO -]] {{P(ancn)-P(/cn)-sz”[k,vn],g)} (21)
n=1 k=1

In the absence of genuine prior knowledge about the regylatetwork structure, we assume for
P(G) a uniform distribution on graphs, subject to a fan-in resioh of |r,,| < 3. As prior prob-
ability distributions on the node-specific numbers of migtaomponentsC,,, P(k,,), we take iid
truncated Poisson distributions with shape paramatet 1, restricted tol < K, < Kpax
(we setKyp;ax = 10 in our simulations). The prior distribution on the latentigble vectors,
P(VIK) = [12_,{P(V.|K,), is implicitly defined via the change-point process as fotio We
identify C,, with IC,, — 1 change-pointy,, = {b, 1, ..., bn x,—1} On the continuous intervé, m|.
For notational convenience we introduce the pseudo chpogesb,, o = 2 andb,, x, = m. For
nodeX,, the observation at time pointis assigned to th&th component, symbolically,,(¢) = k,

if by r—1 <t < by Following [4] we assume that the change-points are digiith as the even-
numbered order statistics @f := 2(K,, — 1) + 1 pointsuy, . .., uz uniformly and independently
distributed on the interval2, m]. The motivation for this prior, instead of takinfg,, uniformly
distributed points, is to encouragepriori an equal spacing between the change-points, i.e. to
discourage mixture components (i.e. segments) that cootaly a few observations. The even-
numbered order statistics prior on the change-point looath,, induces a prior distribution on the
node-specific allocation vectohs,,. Deriving a closed-form expression is involved. Howevke t
MCMC scheme we discuss in the next section does not saWpldirectly, but is based on local
modifications ofV,, based on birth, death and reallocation moves. All that isiired for the ac-
ceptance probabilities of these moves B(@& ,,|C,,) ratios, which are straightforward to compute.

3This implies that we propose a non-stationary rather than a proper nesr-finodel.



4.3 MCMC inference (extended version of the main paper)

We now describe an MCMC algorithm to obtain a samfgé, Vi, K*},_; ; from the posterior
distribution P(G, V,K|D) « P(G,V,K, D) of Eq. (21). We combine the structure MCMC algo-
rithm? [3, 9] with the change-point model used in [4], and draw onftie that conditional on the
allocation vectorsV, the model parameters can be integrated out to obtain thgimaatikelihood
terms¥ (D7~ [k, V,],G) in closed form, as shown in the previous section. Note thapproach is
equivalent to the idea underlying the allocation sampleppsed in P ]. The resulting algorithm is
effectively an RIMCMC scheme [4] in the discrete space offagk structures and latent allocation
vectors, where the Jacobian in the acceptance criteriowesya 1 and can be omitted. With prob-
ability p = 0.5 we perform a structure MCMC move on the current grgtand leave the latent
variable matrix and the numbers of mixture components umgéd, symbolically’Vit! = V¢ and
Kit! = K. A new candidate grapg‘*! is randomly drawn out of the set of graph§G?) that
can be reached from the current graghby deletion or addition of a single edge. The proposed
graphG**! is accepted with probability:

f1, PGV PO 1))
POIGLVIK) PG NG

where|.| is the cardinality, and the marginal likelihood terms haee specified in Eq. (19). The
graph is left unchanged, symbolically*! := G¢, if the move is not accepted.

A(GTG) = (22)

With the complementary probability — pg we leave the grapﬁl unchanged and perform a move
on (Vi K'), whereV? is the latent variable vector of,, in V¢, andK® = (K%,...,KY%). W
randomly select a nodﬁ’n and change its current number of compondﬁ;swa a change pomt
birth or death move, or its latent variable veclgt, by a change-point re-allocation move. The
change-point birth (death) move increases (decredSesly 1 and may also have an effect §f,.

The change-point reallocation move leav€s unchanged and may have an effectVéf). Under
fairly mild regularity conditions (ergodicity), the MCMGaspling scheme converges to the desired
posterior distribution if the acceptance probabilitiestfte three change-point movés? , Vi) —
(Kirt 'Vitl) are chosen of the formin(1, R), see [4], with

’Cifl \I/(Dﬂ"n [k} ViJrl] g)
R= kj(li ”Tr =2 x Ax B (23)
[Tx2 ¥(Drr [k, V3], G)

whereA = P(VEFLKCHL) P /P(VEKE ) P(KE) is the prior probability ratio, and3 is the
inverse proposal probability ratio. The exact form of thizggors depends on the move type and the
formulae were not provided in the main paper:

(i) For a change-point reallocatidr(r) we randomly select one of the existing change-points
bn; € {bn1,---,bnx,—1}, and the replacement vallbgj is drawn from a uniform distribution
on b, ;—1,bn j+1] whereb, o = 2 andb,, x, = m. Hence, the proposal probability ratio is one,
the prior probabilitiesP(K:t') = P(K!) cancel out, and the remaining prior probability ratio
P(ViFLKiFL) /P(Vi|KE) can be obtained from p.720 in [4]:

(bj1 — bl )(BF ;= bnj—1)
(bnj41 = bnj)(bny — bpj—1)’

If there is no change-poink{, = 1) the move is rejected and the Markov chain is left unchanged.
(ii) If a change-point birth move (b) oit’, is proposed, the location of the new change-pbiris
randomly drawn from a uniform dlstnbutlon on the interj&lm]; the proposal probability for this
move isby: /(m — 2), whereby: is the (C: -dependent) probability of selecting a birth move. The
reverse death move, which is selected with probabiliy: 1), consists in discarding randomly one

A, = B, =1 (24)

4The MCMC algorithm based on Eq.(10) i is computationally less efficient than when applied to static
DBNs, since the local scores have to be re-computed every time the pssifithe change-points change.
®This move is chosen with probability— bxi — dyi, Whereby; andd,: are defined below.



of the (K, + 1) — 1 = K}, change- points The inverse proposal probability ratidisstgiven by

= dxi, +1)(m — 2)/b,@ K. The prior probability ratio is given by the first three factdn the
expressmn at the bottom of p.720 in [4] (slightly modifiecattmw for the fact thaiC,, components
correspond tdC,, — 1 change-points), and we get:

Py + 1) 21, (2K5 +1) (bng 1 = b —bng) 5 _ docirn(m —2)
P(K3) (m —2)? (g1 —bny) bei, Ko

ForK! = Ky 4x the birth of a new change-point is invalid and the Markov ohaieft unchanged.

Note that the ratio of the proposal probabilities for birersus death movegc: 11)/bx:; can be

chosen such that it cancels out against the prior i@&tit!, + 1)/P(K?), and the expression sim-
plifies:

Ay = (25)

2(2K% + 1) (bn,j+1 - bT)(bT - bmj)

ApBy = 26
o (m —2) (bnj+1 = bn,j) (26)

(iii) A change-point death move (d) is the reverse of thethimove, and we get:
AyBy = (m—2) (bn,j-H - bmj) 27)

202K, — 1) (bn,j41 = 0T)(bT = bn )

5 Implementation of alternative Bayesian network methods icluded in our
comparative benchmark study

The generalization of th8Ge model of Geiger and Heckerman [1] to dynamic Bayesian netsvor
has been described in Section 3. In analogy, the sfafiz model of Heckerman et al. [7] can
be generalized for dynamic Bayesian networks; e.g. it spaads to the non-stationary model
in Robinson and Hartemink [10]. We include a slightly modifieersion of theBGM model of
Grzegorczyk et al. (see [5]) in our comparison. TB& M model differs from ouep BGe model in
two aspects. First, the latent variable allocation is commathe whole network, that is, the change-
points are not node-specific. Second, the assignment opdatts to components is not effected by
a change-point process, but via a free allocation of thetatariables. The second aspect leads to
a more flexible model, which could be useful for static Bagmsietworks and iid data rather than
time series. When combined with the node-specific changatpof thecp BGe model, it will lead

to a non-linear rather than non-stationary model, as we Haseissed in the main paper. However,
for time series, employing a free allocation model discagdisvant information about the structure
of the data. Namely, that under the assumption of a Markadégendence, adjacent time points are
a priori likely to be governed by the same process. Moreover, thedileeation model leads to a
higher complexity of the latent variable configuration spaehich is likely to adversely affect the
mixing and convergence properties of the MCMC sampler. ttepthat the comparison between the
two models be not dominated by (1) the different degrees ofptexity of the MCMC simulations
or (2) the presence versus absence of prior information tatheudata structure, we have replaced
the free allocation model originally used f&G M by the change-point process of our own model.
In this way our comparison focuses on the aspect of emplayaug-specific rather than common
change-points, that is, it allows us to investigate to whtdr this additional model flexibility leads
to an improved network reconstruction accuracy.

We now briefly describe the modifieBGM model: An allocation vectod of sizem — 1 de-

scribes the allocation of the time poirits= 2, ..., m to the C components, an®V:%) denotes all
realizations that are allocated to componknEor the joint posterior probability we get:

P(G,V,K|D) x P(K)P(V|K)P(G)P(D|G,V,K) (28)
where
K
P(DIG. ¥, k) = [] P(DV#)|g) (29)
k=1
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and each factoP(D(V-*)|G) corresponds to a subset of the d&&’*) for which an independent
BGe score can be computed. Fét(K) we take a truncated Poisson distribution with= 1
restricted tal < K < Kprax With Kprax = 10. Asin thecp BGe model, we identifyiC with K —1
breakpoints on the continuous interyal m| and we assume that these breakpoints are distributed
as the even-numbered order statisticR@ — 1) + 1 points uniformly distributed of2, m).

As described for thep BGe model in Section 2 of the main paper, the structure MCMC dtligor

of [9] is then combined with the change-point model of [4].th\fprobabilityps; = 0.5 a structure
MCMC move is performed on the gragh andV andk are left unchanged. A new candidate graph
Gt is randomly drawn out of the set of graph§G) that can be reached from the current gragjply
deletion or addition of a single edge. The acceptance pitityaor a move fromg to G1 is given
by A = min(1, R), where

P(DIG,V,k) PG NG
and|.| is the cardinality. With the complementary probability- pi a breakpoint birth, death, or
re-allocation move is performed cén?, K) andg is left unchanged. The acceptance probabilities for
these move$k, V) — (KT, V") are of the same functional formt = min(1, R) where

R_ POIGLV.K) PG IN©) (30)

_ PG VKN
P(DIG,V.K)

¢y depends on the move type, and can easily be derived as werdidefop BGe algorithm in
Subsection 4.3. In essence, e&thhas to be replaced by in the corresponding equations.

(1)

Another non-linear model based on node-specific Gaussiaturaimodels has been proposed by
Ko et al. [8]. In this approach, data are assigmedie-specificallyand individually to mixture
components, resulting in high model flexibility. The authoesort to the Bayesian information
criterion (BIC) of [11] for graph selection, which is only agd approximation to the marginal
likelihood in the limit of large data sets. The BIC score ofraghg is defined as follows:

Score(G) = log(P(D|G, 8)) — %\5\ log m (32)

whered is the maximum likelihood estimate of the unknown parametend|§\ is the number of
unknown parameters that have been estimated.

The Gaussian mixture model of [8], which we henceforth rédeas theG M ;- model, is a node-
specific mixture model with node-specific mixture weightgraetersy,, ;. Conditional on a fixed

numbers of mixture component& = (K4, .. ., KC,,) the likelihood of the& M ;- model factorizes
as follows:
N m K,
P(D‘Q,K,G) = H H Z an,k’P(Xn(t) = Dwz,t|7T7L(t - 1) = D(fr”,t—l)v 0:) (33)
n=1t=2k=1

The maximum likelihood estimafor the mixture weightsy,, ;, and parametele,’i in the model of
Ko et al. (see Eq. (33)) has no closed-form solution. Theeetdo et al. [8] apply the EM-algorithm

to obtain a (local) maximum likelihood estima®'" anda, 1+ (k = 1,...,K,) for the NV joint
probability distributions:

m

Kn
H Z an,k:;fP(Xn(t) = Dmt» 7Tn(t - 1) = ID(ﬂ'n,tfl)a 0»]2#) (34)
t=2 k=1

and draw on the fact that the marginal probability distiibatof the parent nodes in, is the same
as the joint probability distribution in Eq. (34) with alléhparameters corresponding to the child
nodeX,, removed. That is, Ko et al. remove all ML estimates corredpanto the child nodeX,



from 0% and plug the remaining parameters, symbolical§;} c %7, and the estimated mixture
weightsa,, 1 == an k4 (k= 1,...,K,) into the (marginal) likelihood:

>

n

n gt P(mn(t — 1) = Dy o1y, 00F) (35)
1

s

t=2

E
I

to obtain an approximaleestimate for the maximum likelihood value of the marginadlability
distribution of the parent nodes im,. This can be done independently for &l factors (local
distributions) in Eq. (33). Finally, from the definition obuditional probability distributions, Ko et
al. obtain:

N S Akt P(X(t) = Dyt n(t — 1) = Dy 1), 051)

PG K.0) = [[]]

s i S i P(ma(t — 1) = Din, i1y, 05F)

(36)

In essence, for each of thév local (conditional) probability distributions in Eq. (33)
the parameters of the joint posterior probability disttibos of X,, and m,, symbolically:
s Onn 1,081 .. 88T are maximized independently as parameters of a Gaussian
mixture distribution by applying the EM-algorithm on thetdaubset:

D(X'ru'n—n) = {(D’I’L,t7D7Tn,t71) 12 S t S m} (37)

The ML estimates for the marginal likelihood of the paren@®inr,, are approximated by remov-
ing all parameters corresponding to the child nédefrom c, 1 + and leaving the mixture weights
Qi it Unchangedk = 1,...,K,,).

The number of estimated parameters is given by:

N
0(G.K)| =K =1+ Y ((I7al + 1) + (|| +2) - (Ia| + 1)/2)) - K (38)
n=1
whereK = (K4,...,K,,) are the numbers of mixture components, angl| is the cardinality

of the parent node set of,,. For clarity, we note thaf|r,| + 1) expectation parameters and
(|mn| + 2) - (|7n] + 1)/2 covariance parameters have to be estimated for each df thmixture
components and that there /€, — 1) (unknown) mixture weights.

TheGMp;c score of a graply is then given by:
. 1 ~
S(G|IGMpic) = max {log(P(D|Q,K,9)) — §|9(Q7K)| logm: K = (Kq,... JCn)} (39)

whereby the numbers of mixture components, that isXhelements in the vectdk, can be re-
stricted:1 < K,, < Kyax, andP(D|G, K, 0) was defined in Eq. (36). We skyy4x = 10, and
the G Mg estimator of the network structure is given by the grgphwith the highest score:

S(G*|GMpic) > S(GIGMBic) (40)

for all possible graphg. We note that the computational costs for inferring €&/ 5 ;- estimator
can be drastically reduced by determining the best paradd setr,, for each of theV domain vari-
ablesX,, independently, and joining the resulting 'subnetworkgyémerate a single comprehensive
network for the whole domain. This holds true for dynamic Bsign networks, where the acyclicity
constraint is satisfied by construction, but was also madetesuristic assumption in [8], where it
can potentially violate the acyclicity assumption.

Note that this procedure is exact for a multivariate Gaussian distributitmada for a mixture of multi-
variate Gaussians.
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6 Synthetic data

To assess the performance of the propagddGe model, we applied it to synthetic data generated
from four different network structures shown in Figure 1 lo¢ tmain paper.

Figure 1a in the main paper shows the smallest syntheticarktinat we considered. It consists of
two domain nodes( andY’, and there are two edges, namely a feedback-l§op> X, leading to
autocorrelation in the time seri€§(.), and a second edge fro to Y, which was modelled by a
piecewise linear process with changing (time-dependeificient3(t):

X(t+1) = V1-2-X(t)+e-dx(t+1) (41)
Y(t+1) = BE)-X({t) +c dy(t+1) (42)

wheree € [0,1], andgx (1), ¢x(2),...,dy (1), ¢y (2),... are iid Normally distributed variables.

Eq. (41) describes the autoregressive proc€gs, and+/1 — e? € [0, 1] is the (auto-)correlation
betweenX (t) and X (¢ + 1) for all time-points¢t. That is, the autocorrelation does not vary in
time, and we can tune the autocorrelation straightforwalbgi settinge correspondingly. E.g. for
¢ = 1 we have a white noise process of iid standard Normally t¢hsteid variables, symbolically:
X(t+1) = ¢x(t+1). Fore = 0 we obtain a proces¥ (.) which is constant in time, symbolically:
X (t+1) = X (¢t) for all t without any noise injections. We initializ& (1) with a random realization
from a standard Normal variable. Théf\(.) is standard Normally distributed at each time pdint
for eache € [0, 1].

From Eg. (42) it can be seen that the relationship betwemdY is implemented by a piecewise
linear function, whose coefficiept(t) changes in time. For this 2-node domain we generate 41
observations, and for simplicity, we seft) = 1 forthe first @ < ¢ < 11) and the last32 < ¢t < 41)
ten observations and(t) = —1 for the 20 time points in betweenZ < ¢ < 31).

Moreover, we decided to specify the noise level in terms gfiai-to-noise ratios (SNRs). That is,
we set the coefficient dependent on the average input signals. To this end we dstilma stan-

dard deviatiorv (3(t) X (¢)) of the input signal$}(1) X (1), 3(2) X (2), . . . before noise injections in
advance by exhaustive data simulations. Having estimatg¢t) X (¢)) by the empirical standard

deviationa(ﬁ(?)}(t)) from the pre-simulated data, we compute the coefficiead follows:

o= 7OX() @3

whereSN R is the specified signal-to-noise ratio.

The same idea can be used for generating data from the neshiorn in Figure 1b of the main
paper. For this 4-node network domain we define:

Xt+1) = 1—e2-X(t)+e-ox(t+1)

Y(it+1) = py(t) X()+tey-dy(t+1)
Wt+1) = Bw(t) X#) +ew-ow(t+1)
Z(t+1) = Bz(t) X(t)+cz-dz(t+1) (44)

where all noise termsg (.) are iid standard Normally distributed variables. We ititia all three

[ coefficients with '+1’ and for the three nodé&§ W, and Z that are regulated by, we flip a
coin to determine whether the corresponding coefficigft) changes its sign once (from '+1’ to
’-1') or twice (that is, from '+1’ to -1’ and later back to '+}, and we randomly draw the change-
point locations afterwards. For each of the three variablesndependently draw the change-point
location(s) from uniform distributions (i) over the disteeinterval {6, ...,36} to avoid change-
points during the first/last five time points, and (ii) undee tonstraint that there are at least 5 time
points between the two change-point locations when a caffichanges its sign twice.
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As described for the smaller network the three coefficiertscz, ciy can be computed from pre-
simulated data to ensure that a pre-specified signal-teerratio SNR is given, e.g.:
_a(By(H)X(1))
cy = ———-——--

SNR (45)

where SN R is the specified signal-to-noise ratio an(jﬁy@,)\X(t)) can be estimated from pre-
simulated data.

The same idea can also be used to generate synthetic date fatightly-modified) RAF-pathway
shown in Figure 1c of the main paper. Node 'PIP3’ has a reatifeedback loop:

PIP3(t+1)=+\/1—¢2-PIP3(t) 4+ - ¢prps(t+ 1) (46)

and the realizations of the other 10 domain nodes are line@bmations of the realizations of
its parent nodes at the preceding time points plus reatizatof iid standard Normal distributions
(noise injections). E.g. for 'PIP2":

PIP2(t+ 1) = Bprps(t) - PIP3(t) + Bprec(t) - PLCG(t) + cprpe - dprp2(t +1)  (47)

For each node we flip a coin to determine whether its coeffisiehange their values once or twice,
and we randomly draw the change-point locations indepahden each domain node from discrete
uniform distributions under the constraints (i) that thexeno change-point among the first/last 5
observations and (ii) that there are at least 5 time pointsdmn change-points. Different from the
regulatory mechanisms for the smaller domains in Figur® bfthe main paper, we sample new
coefficientss, at each change-point from continuous uniform distribugion the interval0.5, 2] and
we flip a coin to determine the sign of the new coefficient @&hange-point does not necessarily
imply a change of sign of the coefficients.).

As before, the coefficientscan be computed from pre-simulated data to ensure that spa@fied
signal-to-noise ratio (SNR) is given, e.g:

o(Bprps(t)PIP3(t) + Bproc(t) PLOG(t))
SNR

CpIP2 = (48)

Finally, for the network structure shown in Figure 1c of thaimpaper we generated data using
sinusoidal transfer functions. This leads to a strongemmatsh between the model and the data-
generation mechanism. The details can be found in the maierpa

7 Simulations

In all our simulations, data were standardized to zero medmaarginal variance of 1 for all dimen-
sions. ForBGe, BGM, and ourcpBGe model the hyperparameters of the normal-Wishart prior
were chosen as uninformative as possible subject to ceggiratory conditions discussed in Geiger
and Heckerman [1]ip = (0, ...,0)T andW = Iy, 1, wherey is an(N + 1)-dimensional column
vector and/y 11 is the(IN +1)-by-(N +1) identity matrix. The total prior precision parameters were
setto:a = 1 andv = N + 3, whereN is the number of domain variables (nodes). As described
in Section 3 we havéN + 1)-by-(m — 1) data matrices in a dynamic Bayesian networks in which
'direct feedback-loops’ are allowed; hence the covarianegrices are of siz&V + 1)-by-(V + 1).

The ’effective’ number of nodes % + 1; see Section 3 for more details.

For the BDe model of Heckerman et al. [7] the hyperparameters of thecbiigt prior were also
specified as uninformative as possible, as in Giudici ande@af3]. That is the total prior precision
awassetto 1, andwe sef ; i = {*q, , Wherer; is the number of possible values for thle domain

T4
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node andy; is the number of possible discrete realizations that themarodesr; of theith node
can take on.

For the smaller (bigger) network domains we set both the fuand the sampling-phase lengths
of our MCMC simulations to 50,000 (500,000) each and samplesty 1,000 iterations during
the sampling-phase. We note that even for the bigger netdorkains withV = 11 (synthetic
RAF-pathway data) and/ = 9 (real Arabidopsis data) nodes each single MCMC simulatgn f
the proposedpBGe Bayesian network model was accomplished within few houirsguislatlal

code on a SunFire X4100M2 machine with MAD Opteron 2224 SH-daee processor. We ap-
plied the standard diagnostic based on trace plots (seafig]the potential scale reduction factor
(see [2]) to assure that in this way a sufficient degree of emyence had been reached. That is,
for several data sets from the RAF-pathway and forAngbidopsis thalianalata set we started 5
independent MCMC simulations from different initializatis on the same data set, and we com-
puted the potential scale reduction factor (PSRF) basetdle@marginal edge posterior probabilities
to monitor convergence. As we observed a sufficient degremmfergence for all these data sets
(PSFR < 1.2), we reported only the results of the empty-seeded MCMC iitise main paper.

For the evaluation of the results, we proceeded as followsthe synthetic study based on the net-
work domains shown in Figure 1 of the main paper, we computedrarginal posterior probabili-
ties of the individual network edges. All MCMC schemes, whieere applied to the conventional
Bayesian network model$}De and BGe), the non-homogeneous mixture Bayesian network model
BGM, and the proposech BGe model, output a sample of graphs from the posterior distidiou

For each of these four methods, the marginal edge postebiapility can be estimated from the
fraction of graphs in the MCMC sample that contain the edgatefest.

For a fair comparison, we applied thieM ;- model of Ko et al. 10 times independently with
different initializations. In essence, we initialized tk@éneans clustering algorithm by random re-
alizations ofN (u, Iv) distributions, wherd y is the identity matrix ang: is a random expectation
vector with entries sampled independently from continueniform distributions orf—1,1]. The
output of the k-means cluster algorithm was then used tmlizié the EM-algorithm as described in
Ko et al. [8]. Afterwards, we took for each individual edge tinaction of inferredz M g ;¢ graphs
that contained the edge of interest as the score for thigcpkat edge.

For all mixture models we restricted the maximal number oftomie components ti; 4 x = 10, a
limit that was never reached in the simulations. The datereiization required for the multinomial
BDe Bayesian network scoring metric was accomplished wighimformation Bottleneck algorithm
[6]. More precisely, we first applied quantile discretipatito discretize each domain variable inde-
pendently into 20 discrete levels. Afterwards the InforimaBottleneck was run until each domain
variable contained three discetization levels. We note tiina Information Bottleneck algorithm
merges, for each variable, neighboring discretizatioelleguch that the pairwise information loss
— in terms of the average mutual information between thigalsée and the others — is minimized.
Therefore, the standard algorithm for static data was mexdlifd take into account (i) that the pair-
wise mutual information\/ I between two variableX andY has to be computed with a time lag
7 = 1 and is given by the average 8 I(X (¢),Y (¢t + 1) and MI(Y (¢t), X (¢ + 1), and (i) that
recurrent feedback loops are valid in dynamic Bayesian odsvso that for each domain variable
X the pairwise mutual information betweefi(¢t) and X (¢ + 1) has to be included, symbolically
MI(X(t), X(t+1).

We assessed the network reconstruction accuracy via tieeusrger the ROC (receiver operator
characteristic) curve: AUC,; this is a standard criterioatthas been applied in numerous related
articles.
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8 Additional figures of the empirical results

In this section we provide additional figures that could — ttugpace restrictions — not be included
in the main paper. Figures 1 to 4 show AUC histograms for tmestic data sets. For each network
structure shown in Figure 1 of the main paper we chose vapaumsmeter settings, and in the main
paper we summarized the results in terms of AUC scatter plotghis supplementary paper, we
present separate AUC histograms, for each parametergetjparately.

We further note that the conditions of the paired t-test iglpin the main paper are not strictly
satisfied, as the data have been generated under differditions and are therefore not identically
distributed. That is, for each of the four network structuaed each of the five methods under com-
parison, we computed average AUC scores for various preiiga parameter combinations. We
then applied a two-sided paired t-test to test whether tkeage AUC scores over dll considered
parameter combinations differed significantly. Howeveardiferent parameter combination give
rise to different (average) AUC scores, we do not have a sawfibentically distributed variables.

In this supplementary material we apply two-sided pairégbts to each individual parameter com-
bination. As the average AUC scores have been computed fioimd2pendent data instantiations
for each individual parameter setting for the smaller neksan Figures la-c of the main paper,
and from 5 independent data instantiations for each indaligarameter setting in Figure 1d of the
main paper, we can compute a p-value for each individualrpatar setting. Figures 5 to 9 show
the resulting p-values for each network structure, sunmedrias heatmatrices. As we considered
h = 20 (networks in Figures la-b of the main paper)= 18 (network in Figure 1c of the main
paper) and: = 15 (network in Figure 1d of the main paper) different parametambinations (hy-
potheses), we need to address the issue of multiple testmghis end, we computed the overall
p-value with a family-wise Bonferroni correction for eactogp of h pairwise tests. The resulting
(two-sided paired t-test) p-values can be representedamigices, as shown in Figures 5-9. For
each network structure there are four heatmatrices, intwtiie AUC scores ofpBGe were com-
pared with the AUC scores of the four competing models. Thers®f the cells of the heatmatrices
indicate whetherpBGe performed better or worse than the corresponding compaetiethod. In
this context we distinguished between two significancel$ev@) significantly better or worse after
Bonferroni correction for the number of parameter combors, i.e. hypothesis to be tested: (cor-
rected p-valuesp < 0.025/h orp > (1 — 0.025/h) whereh € {15,18,20}), and (2) significantly
better or worse without Bonferroni correction for multigkesting (uncorrected p-valueg:< 0.025
orp > 0.975).

The heatmatrix representations in Figures 5-9 reveal a teiad in favour of the proposegh BGe
model. For example, in Figures 5 anad®BGe performs significantly better at the corrected level
p = 0.025/h than BGe and B De for various parameter settings (e.g. see the block of blatlk c
in the first three columns foFNR = 100, SNR = 10, and SNR = 3 in the corresponding
four heatmatrices) while neithdsGe nor BDe perform significantly better thanp BGe for any
parameter combination. The Gaussian mixture madklz ;- of Ko et al. performs significantly
worse tharcp BGe at the corrected level = 0.025/h 10 times for the network in Figure 1a of the
main paper (see black cells in Figure 5) and 6 times for theordtin Figure 1b of the main paper
(see black cells in Figure 6) while it performs better thafi Ge only once for these two domains
with N = 2 andN = 4 nodes (see the white cell fé&tN R = 100 ande = 0.1 in Figure 5). For the
data from the network with a non-linear sinusoid processvshio Figure 1c of the main paper this
trend becomes even more obvious: ThHe/z;~ model of Ko et al. performs significantly worse
thancpBGe at the corrected level = 0.025/h for 17 out ofh = 18 considered parameter settings
(see (b) panels in Figures 7 and 8). Moreover, we note thairtosed:p BGe model is superior to
the GM - model at least at the uncorrected lepek 0.025 for the eighteenth parameter setting.

The BGM model of Grzegorczyk et al. and the proposedGe model both perform approxi-
mately equally well for the networks shown in Figures 1a ahdfithe main paper. That is, there
are only 2 black cells and there is no white cell in the (a) pgoEFigure 5 and Figure 6. However,
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\ Segment 1 Segment 2 Segment 3 Segment 4

Source Mockler Edwards Grzegorcyk Grzegorcyk
et al.(2007) et al. (2006) et al. (2008) et al. (2008)
Time points 12 13 13 13
Time interval 4h 4h 2h 2h
Pretreatment | 12h-light 12h-dark 12h-light 12h-dark  10h-light 10h-darkl4h-light 14h-dark
entrainment cycle cycle cycle cycle
Measurements Constant Constant Constant Constant
light light light light
Laboratory Kay Lab Miller Lab Miller Lab Miller Lab

Table 1: Overview of the gene expression time series segnfi@nfrabidopsis.

a certain trend in favour afp BGe is revealed by the heatmatrix in Figure 6 panel (a), as ther@ a
further parameter combinations for whiehBGe performs better at the uncorrected lepek 0.025
(dark grey cells) but only one single parameter combinatios: 0.99 and SNR=3) wherd3G M
performs better at the uncorrected lewek 0.025 (light grey cells). The corresponding three heat-
matrices in Figures 7, 8, and 9 also reveal a trend in favoup®fGe. That is,cpBGe performs
more often significantly better thaBGM at the corrected level = 0.025/h (black cells) than
vice-versa (white cells). In total there are 9 black cellsthere is no white cell in the (a) panels of
these three figures.

Finally, we provide further plots for thArabidopsis thaliandime series gene expression data; see
Figures 10-14. Figure 10 shows the time series obtainedruhdefour experimental conditions
listed in Table 1. Figure 11 shows the posterior probab#gitf the change-point locations plotted
against the time axis for the nine circadian genes. The dotetical lines indicate the true transi-
tion times (concatenation points) between the differepeexental phases. For four of the genes
(LHY, TOC1, PRR9 and PRR5), all known true change-pointsareectly predicted. Genes PRR5
and PRR9 show various additional change-points; this migtitate that they are affected by ad-
ditional heterogeneities beyond the four experimentasphaFour of the genes (CCAL1, ELF3, Gl,
PRR3) show two change-points, at the true locations (ELABpoGwith a short time lag (CCA1L,
PRR3). For one gene (ELF4) only one change-point is pradlia@ethe location of the first true
change-point between time series segments 1 and 2. Whergadeoser all nine genes, the three
true change-points are correctly predicted (see Figure@right panel of the main paper). A com-
parison of Table 1 with the locations of the peaks in Figuresddgests that gene CCAL1 is mainly
affected by a change of the entrainment condition, gene B& R#ainly affected by factors associ-
ated with the laboratory context, and genes ELF3 and PRR®aiely affected by a change of the
sampling time interval (2 versus 4 hours). While we are séi#léng a biological corroboration of
these predictions, Figure 11 demonstrates that the addltitexibility of the node-specific change-
point model can be exploited as an exploratory tool for newdtlyesis generation. Figures 12 and
13 show complementary representations. Figure 13 showgasterior distribution of the number
of components for each gene. For some genes the mode of$hibudiion is equal (TOC1) or close
(LHY) to the chosen number of experimental phases (four)t tBere are also genes that display
deviations. Note that the posterior distributions are iast with the predicted change-points in
Figure 11. For instance, gene ELF4, which shows only oneigtestichange-point in Figure 11, has
a posterior distribution that peaks at two components. G#RR9, for which we found additional
change-points in Figure 11, has a posterior distributiomsehmode is shifted to a higher value,
at 7 components. Again, we suggest that our node-specifitgehpoint model provides a tool for
biological hypothesis generation. When averaging overadieaspecific posterior distributions, we
get the distribution shown in the left panel of Figure 14. Tinede of this distribution (at 3 compo-
nents) is close to the true number of experimental phasashwd4. The slight negative bias can be
explained by the fact that we have imposed a restrictiver imi¢he form of a Poisson distribution
on the number of components, as described in the main pajreallyi- Figure 12 shows another
complementary representation to Figure 11. The panels sioeallocation matrices that indicate
the probability with which two time points are assigned te #ame component.The grey shading
indicates probabilities, with white corresponding to alability of 1, and black corresponding to a
probability of 0. The structures found in Figure 12 are cetegit with those of Figures 11 and 13, as
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one can easily convince oneself. When averaging over all-spdeific co-allocation matrices, we
get the co-allocation matrix shown in the right panel of Feggi4. Note that the true change-points
related to the four experimental phases are clearly didalern
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Figure 1: AUC scores for the network with N = 2 shown in Figure 1a of the main paper.
Node X is autocorrelated with autocorrelatiayil — <2 and the regulatory mechanisms — Y

is implemented as a piecewise linear process. The figureasged as d-by-5 matrix with cells
corresponding td = 20 different parameter combinations. In the matrix each rowesponds to
an e parameter and each column corresponds t&AhR parameter. For each parameter setting
the average AUC scores have been derived from 25 indepeddentnstantiations. The error bars
correspond to one standard deviation. In each ofithe 20 histograms the 1st bar corresponds to
the BDe model, the second bar to the BGe model, the 3rd baetG Mg~ model of Ko et al., the
4th bar to theBG M model of Grzegorczyk et al., and the 5th bar to the propesét{ze model.
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Figure 2: AUC score histograms for the network with N = 4 nodes shown in Figure 1b of the
main paper. Node X is autocorrelated with autocorrelatianl — <2 and the three other regulatory
mechanisms are realized by piecewise linear processesfigire is arranged as #by-5 matrix
with cells corresponding t&é = 20 different parameter combinations. In the matrix each row
corresponds to an parameter and each column corresponds t§ &R value. For each parameter
setting the average AUC scores have been derived #oimdependent data instantiations. The error
bars correspond to one standard deviation. In each df the20 histograms the 1st bar corresponds
to the BDe model, the second bar to the BGe model, the 3rd letG Mg~ model of Ko et al.,
the 4th bar to thé8G M model of Grzegorczyk et al., and the 5th bar to the propegéiize model.
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Figure 3: AUC score histograms for the network with N = 4 nodes shown in Figure 1c of the
main paper. Node Z is co-regulated by three nodég, Y, and¥. While the effects ofX (¢) and

Y (¢t) onZ(t + 1) are linear, nod&V is autocorrelated and a sinusoid sigagl - sin(WW (¢) is given

to Z(t+1). There are two panels for differeat, cy coefficients in the figure: (a)y = ¢y = 0.25

and (b)cx = ¢y = 0.5. Both panels are arranged &sy-3 matrices with cells corresponding
to h = 9 different ¢y, ¢z parameter combinations. In the matrices each row corretptm a

cw and each column corresponds teacoefficient. For each parameter setting the average AUC
scores have been derived fr@% independent data instantiations. The error bars corresfmpane
standard deviation. In each of the= 18 histograms the 1st bar corresponds to the BDe model, the
second bar to the BGe model, the 3rd bar todhd 5 ;- model of Ko et al., the 4th bar to theG M
model of Grzegorczyk et al., and the 5th bar to the propegéiize model.
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Figure 4:AUC score histograms for the RAF-pathway with NV = 11 nodes shown in Figure 1d
of the main paper. Node PI P2 is autocorrelated with autocorrelatianl — 2 and all other node
interactions are implemented via piecewise linear praesdhe figure is arranged as3eby-5
matrix with cells corresponding th = 15 differente (rows) andSN R (columns) combinations.
For each parameter setting the average AUC scores have leegrddfrom5 independent data
instantiations. The error bars correspond to one standasidiion. In each of theé = 15 histograms
the 1st bar corresponds to the BDe model, the second bar tB@semodel, the 3rd bar to the
GMprc model of Ko et al., the 4th bar to theG M model of Grzegorczyk et al., and the 5th bar
to the proposedp BGe model.
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Figure 5:Heatmatrices of significant average AUC score difference®f the network with N =

2 nodes shown in Figure 1a of the main papetfor each combination of SNR and (two-sided) t-
test for paired samples was employed to test whethBiGe performed significantly better or worse
than each of the four competing methods. The p-values anahlized by heatmatrices, whereby cells
are black ifep BGe performed significantly better after family-wise Bonfemi@orrection and dark
grey if cpBGe performed significantly better only at the (uncorrectedelex = 0.025, that is,
without correction for multiple testing. The cells are vehit cp BGe performed significantly worse
after family-wise Bonferroni correction and light greyif BGe performed significantly worse only
at the (uncorrected) level = 0.025, that is without correction for multiple testing. If thereas/no
significant difference at all, the corresponding cells amch in a medium grey. In each panel a-d
h = 20 hypothesis were tested and each single p-value was comfpaie@®5 data instantiations.
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Figure 6: Heatmatrices of significant differences of AUC scores for th network with N = 4
nodes shown in Figure 1b of the main paperFor each combination of SNR anda (two-sided)
t-test for paired samples was employed to test whethé&iGe performed significantly better or
worse than each competing method. The p-values are visdaby heatmatrices, whereby cells are
black if cp BGe performed significantly better after family-wise Bonfemi@orrection and dark grey
if cpBGe performed significantly better only at the (uncorrectedeler = 0.025, that is, without
correction for multiple testing. The cells are whitecf BGe performed significantly worse after
family-wise Bonferroni correction and light greydp BGe performed significantly worse only at the
levela = 0.025, that is without correction for multiple testing. If therea/no significant difference
at all, the corresponding cells are drawn in a medium greyedch panel a-d = 20 hypothesis
were tested and each single p-value was computed from 2péndent data instantiations.
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Figure 7: Heatmatrices of significant differences of AUC scores for th network with N =

4 nodes shown in Figure 1c of the main paper withcx = ¢y = 0.25. For each parameter
combination ofcy, andcy a (two-sided) t-test for paired samples was employed toviesther
cpBGe performed significantly better or worse than each competgghod. The p-values are
visualized by heatmatrices, whereby cells are blackBGe performed significantly better after
family-wise Bonferroni correction and dark greyjf BGe performed significantly better only at the
(uncorrected) levelv = 0.025, that is, without correction for multiple testing. The cetire white

if cpBGe performed significantly worse after family-wise Bonferraorrection and light grey if
cpBGe performed significantly worse only at the (uncorrectedelev = 0.025, that is without
correction for multiple testing. If there was no significalifference at all, the corresponding cells
are drawn in a medium grey. In each panel Agds = 9 hypothesis were tested and each single p-
value was computed from 25 independent data instantiatintake into consideration that further
ho.s = 9 hypothesis had to be tested #9¢ = cy = 0.5 (See Figure 8) a Bonferroni correction for
h = hg.25 + ho.5 = 18 hypothesis in total was used in each panel a-d.

23



1 1
& 05 S 05
0.25 0.25
0.25 0.5 1 0.25 0.5 1
C C

z z
(@) cpBGe vs. BGM of Grz. etal. (b) cpBGe vs. GMprc of Ko et al.
1 1
& 05 & 05
0.25 0.25
1 2 3 0.25 0.5 1
¢z ¢z
(c) cpBGevs. BGe (d) epBGe vs. BDe
p<0.025/h p<0.025 0.025<p<0.975 0.975<p (1-0.025/h)<p

(e) legend

Figure 8: Heatmatrices of significant differences of AUC scores for th network with N =

4 nodes shown in Figure 1c of the main paper withcx = ¢y = 0.5. For each parameter
combination ofcy, andcy a (two-sided) t-test for paired samples was employed toviesther
cpBGe performed significantly better or worse than each competimgghod. The p-values are
visualized by heatmatrices, whereby cells are blackBGe performed significantly better after
family-wise Bonferroni correction and dark grey if BGMNperformed significantly better only at the
(uncorrected) levelv = 0.025, that is, without correction for multiple testing. The cetire white

if cpBGe performed significantly worse after family-wise Bonferraorrection and light grey if
cpBGe performed significantly worse only at the (uncorrectedelev = 0.025, that is without
correction for multiple testing. If there was no significalifference at all, the corresponding cells
are drawn in a medium grey. In each panel Agd = 9 hypothesis were tested and each single p-
value was computed from 25 independent data instantiatitntake into consideration that further
ho.25 = 9 hypothesis had to be tested for = ¢y = 0.5 (see Figure 7) a Bonferroni correction for
h = hg.25 + ho.5 = 18 hypothesis in total was used in each panel a-d.
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Figure 9: Heatmatrices of significant differences of AUC scores for Rk pathway shown in
Figure 1d of the main paper. For each combination of SNR anda (two-sided) t-test for paired
samples was employed to test whethpBGe performed significantly better or worse than each
competing method. The p-values are visualized by heatoeatrivhereby cells are blackdbBGe
performed significantly better after family-wise Bonfami@orrection and dark grey iipBGe per-
formed significantly better only at the (uncorrected) lavek 0.025, that is, without correction for
multiple testing. The cells are whitedp BGe performed significantly worse after family-wise Bon-
ferroni correction and light grey ifp BGe performed significantly worse only at the (uncorrected)
level o = 0.025, that is without correction for multiple testing. If thereas/no significant difference
at all, the corresponding cells are drawn in a medium greyedch panel a-& = 15 hypothesis
were tested and each single p-value was computed from Sendept data instantiations.
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Figure 10: Overlaid time series plots of the four Arabidopsis thaliana gene expression time
series listed in Table 1. Gene expression levels (y-axis) have been plotted against(k-axis),
measured in hours. The curves have been drawn in differéatscfor the four time series: Black
curve: 1st column in Table 1 (time series from Mockler et.a@Red curve: 2nd column in Table 1
(time series from Edwards et al.). Green and blue curve: 8dl4th column in Table 1 (two
time series from Grzegorczyk et al.: greehi, (column 3 in Table 1) and bluef,g (column 4 in
Table 1)).
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Figure 11:cpBGe inference onArabidopsis thaliana time series data: Node specific posterior
probabilities of transition times for all nine circadian genes. The vertical dotted lines indicate
where a new time series segment starts, that is they markrsihdiffine point of the new segment in
Table 1. Panels (a) and (b) for genes LHY and TOCL1 are alsorsirotihe main paper.
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Figure 12:cpBGe inference orArabidopsisthalianatime series data: Node specific connectivity
structure for all nine circadian genes. For each circadian gene a co-allocation matrix is shown.
The grey shading indicates the posterior probability of timee points being assigned to the same
mixture component, ranging from 0 (black) to 1 (white). Har(@) and (b) for genes LHY and
TOC1 are also shown in the main paper.
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Figure 13:cpBGe inference onArabidopsis thaliana time series data: Node specific posterior
probabilities of the number of mixture components. For each of the nine circadian genes the
posterior distribution of the number of mixture componefstsumber of transitions plus one) is
represented as a histogram.
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Figure 14:cpBGe inference onArabidopsis thaliana time series data: Average over all 9 genes.
(a) The average posterior distribution of the number of omgtcomponents (= number of transitions
plus one) over all nine genes is represented as a histogbgrvérage co-allocation matrix over all
nine circadian genes. The grey shading indicates the paspgobability of two time points being
assigned to the same mixture component, ranging from OKptacl (white).
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