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1 Introduction

This supplementary material provides additional information about ourcpBGe model, the MCMC
simulations and the empirical results, which for space restrictions could not be included in the main
paper. The most recent version of this supplementary material can be downloaded from the follow-
ing website: http://www.bioss.ac.uk/∼dirk/papers/NIPS09/, and it might contain extra material or
revised sections added after the NIPS submission deadline.The notation in the current version of
the supplementary material follows [1], which deviates slightly from the main paper. The following
seven sections 2 to 8 are organized as follows: In Section 2 weprovide details about theBGe
scoring metric for static Bayesian networks as developed byGeiger and Heckerman [1]. TheBGe
scoring metric for dynamic Bayesian networks is described in detail in Section 3. Section 4 is an
extended version of the methodology section of our main paper. Section 5 provides some details
on the four competing models: The focus is on theBGM model of Grzegorczyk et al. [5] and the
Gaussian mixture model developed by Ko et al. [8]. In Section6 we describe how we generated
the synthetic network data for the comparative evaluation study presented in the main paper. In
Section 7 we give all implementation details, such as choiceof hyperparameters, MCMC simulation
lengths, convergence diagnostics, etc.. Finally, in Section 8 we provide some additional figures and
interpretations of the empirical results that could – due tospace restrictions – not be included in the
main paper.

2 The Gaussian BGe scoring metric for static Bayesian networks

This section describes the linear Gaussian BGe scoring metric (Bayesian metric for Gaussian net-
works having score equivalence) for static Bayesian networks as developed by Geiger and Hecker-
man [1]. Given a data setD with m observations of the variablesX1, . . . ,XN :

D =




D1,1 D1,2 . . . D1,m−1 D1,m

D2,1 D2,2 . . . D2,m−1 D2,m

...
...

...
...

...
DN,1 DN,2 . . . DN,m−1 DN,m


 (1)
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so thatDn,j denotes thejth realization of thenth nodeXn, and thejth column ofD: D.,j =
(D1,j , . . . ,DN,j)

T is thejth realization vector of the variables. The Gaussian BGe model assumes
that the observation vectorsD.,j (j = 1, . . . ,m) are a random sample from a multivariate Gaussian
distributionN (~µ,Σ) with an unknown mean vector~µ and an unknown covariance matrixΣ. The
prior joint distribution of~µ andW = Σ−1 is supposed to be the normal-Wishart distribution, that
is, the conditional distribution of~µ given W is N (~µ0, (v · W )−1) with v > 0, and the marginal
distribution ofW is a Wishart distribution withα > N + 1 degrees of freedom and prior matrixT0:

W(α, T0) = c(n, α)|T0|α/2|W|(α−n−1)/2 exp(−1

2
tr(T0W)) (2)

wheretr(T0W) is the sum of the diagonal elements ofT0W, and

c(n, α) :=

{
2α·n/2 · πn·(n−1)/4 ·

n∏

i=1

Γ(
α + 1 − i

2
)

}−1

(3)

The conditionα > N + 1 ensures that the second moments of the posterior distribution are finite
(see also Eq. (26) in [1]). Geiger and Heckerman show that themarginal likelihoodP (D|G) of the
dataD given a graphG can then – under fairly weak conditions of parameter independence and
parameter modularity – be computed in closed form. We define:

TD,m := T0 + SD,m +
v · m
v + m

(~µ0 −Dm)(~µ0 −Dm)T (4)

where

Dm :=
1

m

m∑

j=1

D.,j (5)

is the mean of them realization vectors and

SD,m :=

m∑

j=1

(D.,j −Dm) · (D.,j −Dm)T (6)

T0, µ0, α, andv are hyperparameters of the normal-Wishart prior and have tobe specified in advance.
T0 is anN -by-N matrix,µ0 is anN -by-1 column vector, andv andα are 1-dimensional and usually
referred to as total prior precision parameters.

The marginal likelihood can be computed as follows ([1]):

P (D|G) =
N∏

n=1

Ψ(Dπn

n ,G) =
N∏

n=1

P (D{Xn,πn}|GF ({Xn, πn})
P (D{πn}|GF (πn))

(7)

whereXn is thenth variable,πn is the parent set ofXn in the graphG, D{Xn,πn} andD{πn} are the
data submatrices corresponding to the realizations of the variables in the sets{Xn, πn} and{πn}
only, andGF ({Xn, πn}) andGF (πn) correspond to so-calledfull graphs for the variable subsets
{Xn, πn} and{πn}, that is, to subgraphs with the maximal number of edges so that the subgraphs
do not impose any independence restrictions on these subsets of variables.

The marginal likelihood of the data subsetD{S} ⊂ D corresponding to them realizations of the
N†-dimensional subsetS ⊂ {X1, . . . ,XN} of the N variables given a full graphGF (S) for the
sub-domainS can be computed as follows ([1]):

P (DS |GF (S)) = (2π)−
N†·m

2 ·
{

v

v + m

}N†/2

· c(N†, α)

c(N†, α + m)
(8)

·det(TS
0 )

α
2 · det(TS

D,m)−
α+m

2

wheredet(TS
0 ) anddet(TS

D,m) denote the determinants of the submatricesTS
0 andTS

D,m consisting
only of thoseN† rows and columns that correspond to variables in the subsetS. TD was defined in
Eq. (4), andc(N†, α) andc(N†, α + m) can be computed with Eq. (3).
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3 The Gaussian BGe scoring metric for dynamic Bayesian networks

We now consider the case that instead of independent observations, time series data have been
collected for the domain:(X1(t), . . . XN (t))t=1,...,m, and that we have a (1st-order) Markovian
dependence structure. In this case, dynamic Bayesian networks (DBNs) can be employed. In DBNs
each edge corresponds to an interaction with a time delayτ ; e.g. forτ = 1 an edge pointing from
Xi to Xj means that the realizationxj(t) of Xj at time pointt is influenced by the realization
xi(t − 1) of Xi at the previous time pointt − 1. This can be taken into consideration in the context
of the Gaussian BGe model by building new data matrices – one for each domain variable – from
the original data matrix of sizeN -by-m given in Eq. (1). For dynamic data the columns do not
represent independent (steady-state) observations: thetth column ofD is the realization of the
variables at time pointt (t = 1, . . . ,m). We note that the score equivalence aspect of theBGe
model is not required for dynamic Bayesian networks, because edge reversals are not permissible.
However, formulating the models in terms of theBGe score is advantageous in case one intends to
adapt the framework proposed in the main paper to non-linearstatic Bayesian networks along the
lines of [8].

In principle, there are two alternatives which can be used, and it depends on whether or not ’direct
feedback-loops’, that is edges having the same node as starting and end point, should be allowed in
the network. Here, we allow for ’direct feedback-loops’, and we build the followingN matrices of
size(N + 1)-by-(m − 1) from the (time series) data matrix given in Eq. (1) :

D(n) =




D1,1 D1,2 . . . D1,m−1

D2,1 D2,2 . . . D2,m−1

...
...

...
...

DN,1 DN,2 . . . DN,m−1

Dn,2 Dn,3 . . . Dn,m




(9)

n = 1, . . . , N . That is, we obtainD(n) by deleting the last column ofD and adding a novel row
(Dn,2, . . . ,Dn,m), i.e. thenth row of D shifted leftwards by 1, as the(N + 1)-th row. We can
identify the(N +1)-th row with a new domain variableXN+1. This new variable is thenth domain
variable with a time shift of sizeτ = 1. We note that the novel data matricesD(n) consist of
observations forN + 1 domain variables, i.e. the hyperparametersT0 andµ0 are of the form of an
(N + 1)-by-(N + 1) matrix and an(N + 1)-by-1 column vector, respectively. As before we can
compute the matrixTD(n) for each data setD(n), and we replace Eq. (7) by:

P (D|G) =

N∏

n=1

Ψ(Dπn

n ,G) =

N∏

n=1

P (D(n){XN+1,πn}|GF ({XN+1, πn})
P (D(n){πn}|GF (πn))

(10)

and Eq. (8) by:

P (D(n)S |GF (S)) = (2π)−
N†·(m−1)

2 ·
{

v

v + (m − 1)

}N†/2

· c(N†, α)

c(N†, α + (m − 1))

·det(TS
0 )

α
2 · det(TS

D(i),(m−1))
−

α+(m−1)
2

whereGF (S) is a full graph for the domain variable subsetS of cardinality N† and TS
0 and

TS
D(n),(m−1) are sub-matrices as explained in Section 2.

If we haved independent (time series) data setsD1, . . . ,Dd whereDw is an N -by-mw matrix
consisting ofmw time-dependent realizations of theN variables andw = 1, . . . , d, then we can
build theN matrices:Dw(i) of dimension(N + 1)-by-(mw − 1), i = 1, . . . , N , independently for
eachw, w = 1, . . . , d, using Eq. (9). Afterwards we can merge thed data setsD1(n), . . . ,Dd(n)
column-wise to one single data set:DALL(n) = (D1(n), . . . ,Dd(n)) of dimension(N + 1)-by-∑d

w=1(mw − 1) for each variablen = 1, . . . , N . Using the combined data setDALL(n) for
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computing local scores of the variableXn ensures that the realization ofXn at the first time point
t = 1 of the wth data set segment, symbolically:Dw

i,1, has no relation with the last realizations
of its parent nodesπn in the preceding data segmentDw−1, symbolically:Dw−1

πn,m(w−1)−1. That is,
by adding shifted rows as the(N + 1)th row to each data segmentDw independentlywith Eq. (9)
before merging the resulting data sets it is taken into account that the gene expression values at the
first time point of a time series segment have no relation withthe expression values at the last time
point of the preceding data segment. Therefore, as there areno parent node realizations for the first
time point of each data segmentDw, the first time point of each data segment cannot be scored. The
marginal likelihood in Eqn. (2) and (3) of the main paper haveto be replaced by:

P (D|G) =

∫
P (D|G,θ)P (θ|G)dθ =

N∏

n=1

Ψ(Dπn

n ,G) (11)

Ψ(Dπn

n ,G) =

∫ d∏

w=1

mw∏

t=2

P
(
Xn(t) = Dw

n,t|πn(t − 1) = Dw
(πn,t−1),θn

)
P (θn|G)dθn (12)

whereDπn
n := {(Dw

n,t,Dw
πn,t−1) : 2 ≤ t ≤ mw, 1 ≤ w ≤ d} consists of the subsets of thed data

segments pertaining to nodeXn and parent setπn.

This framework can straightforwardly be applied to the cpBGe model, in that columns of the matrix
DALL(n) are allocated to different components of the underlying mixture model via a change-point
process. As a very simple illustration, consider two time series {X(1),X(2),X(3),X(4)} and
{X̃(1), X̃(2), X̃(3)}, which we want to concatenate. We consider a simple DBN consisting of only
one domain nodeX with a feedback loop back onto itself. MatrixDALL(n) is given by

DALL(n) =

(
X(1) X(2) X(3) X̃(1) X̃(2)

X(2) X(3) X(4) X̃(2) X̃(3)

)
(13)

where we note that the column

(
X(4)

X̃(1)

)
has to be excluded, as explained above. For

a two component mixture model, the columns of this matrix areassigned to one of
two components via a change-point process. Hence, we get thefollowing sub-matrices:{(

X(1)
X(2)

)
,

(
X(2) X(3) X̃(1) X̃(2)

X(3) X(4) X̃(2) X̃(3)

)}
,

{(
X(1) X(2)
X(2) X(3)

)
,

(
X(3) X̃(1) X̃(2)

X(4) X̃(2) X̃(3)

)}
,

. . .,

{(
X(1) X(2) X(3) X̃(1)

X(2) X(3) X(4) X̃(2)

)
,

(
X̃(2)

X̃(3)

)}

More general and to be consistent with the mathematical notations that were used in the main paper
we note that we can alternatively treat these merged data setsDALL(n) (n = 1, . . . , N ) as if they
were extracted from one single time seriesDALL = (D1, . . . ,Dd) with

∑d
w=1 mw time points. It

has then to be taken into account that the boundary time pointsDw
.,mw

andDw+1
.,1 of two neighbouring

data sets in the sequenceDALL = (D1, . . . ,Dd) are unrelated.

More generally and so as to be consistent with the mathematical notation that was used in the main
paper, we note that we can alternatively treat these merged data setsDALL(n) (n = 1, . . . , N ) as
if they were extracted from one single time seriesDALL = (D1, . . . ,Dd) with

∑d
w=1 mw time

points. It has then to be taken into account that the boundarytime pointsDw
.,mw

andDw+1
.,1 of two

neighbouring data sets in the sequenceDALL = (D1, . . . ,Dd) are unrelated.

In terms of ourcpBGe model this means that we have an allocation matrixV
ALL of latent variables

V ALL
n (t) for DALL = (D1, . . . ,Dd) whereV ALL

n (t) = k means that thetth realizationDALL
n,t of
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Xn (2 ≤ t ≤ ∑d
w=1 mw) is allocated to thekth mixture component. In this context we note that

the realization of thetth time point inDALL corresponds to thesth realization in data segmentDq

where

q = 1 + max{u ∈ {0, . . . , d}|t −
u∑

w=1

mw > 0} (14)

ands = t − ∑q
w=1 mw.

There are no realizations for the potential parent nodes of the first time points:D1
.,1, . . .Dd

.,1. There-
fore, the time pointst ∈ {1, (m1 + 1), (m1 + m2 + 1), . . . , (m1 + m2 + . . . + md−1 + 1)}, which
correspond to the first points of the time series, are redundant in the allocation matrixVALL (and
the latent variablesV ALL

n (t) (n = 1, . . . , N)). We therefore left thesed realizations out, which
reduces the number of columns ofV

ALL to mALL =
∑d

w=1(mw − 1).

4 Methodology

4.1 The dynamic BGe network (duplicated from the main paper)

DBNs are flexible models for representing probabilistic relationships between interacting variables
(nodes)X1, . . . ,XN via a directed graphG. An edge pointing fromXi to Xj indicates that the
realization ofXj at time pointt, symbolically:Xj(t), is conditionally dependent on the realization
of Xi at time pointt−1, symbolically:Xi(t−1). The parent node set of nodeXn in G, πn = πn(G),
is the set of all nodes from which an edge points to nodeXn in G. Given a data setD, whereDn,t

andD(πn,t) are thetth realizationsXn(t) andπn(t) of Xn andπn, respectively, and1 ≤ t ≤ m
represents time, DBNs are based on the following homogeneous Markov chain expansion:

P (D|G,θ) =
N∏

n=1

m∏

t=2

P
(
Xn(t) = Dn,t|πn(t − 1) = D(πn,t−1),θn

)
(15)

whereθ is the total parameter vector, composed of node-specific subvectorsθn, which specify
the local conditional distributions in the factorization.From Eq. (15) and under the assumption of
parameter independence,P (θ|G) =

∏
n P (θn|G), the marginal likelihood is given by

P (D|G) =

∫
P (D|G,θ)P (θ|G)dθ =

N∏

n=1

Ψ(Dπn

n ,G) (16)

Ψ(Dπn

n ,G) =

∫ m∏

t=2

P
(
Xn(t) = Dn,t|πn(t − 1) = D(πn,t−1),θn

)
P (θn|G)dθn (17)

whereDπn
n := {(Dn,t,Dπn,t−1) : 2 ≤ t ≤ m} is the subset of data pertaining to nodeXn

and parent setπn. We choose a linear Gaussian distribution for the local conditional distribution
P (Xn|πn,θn) in Eq.(15). Under fairly weak regularity conditions discussed in [1] (parameter mod-
ularity and conjugacy of the prior1), the integral in Eq. (17) has a closed form solution, given by
Eq. (24) in [1]. The resulting expression is called the BGe score2.

1The conjugate prior is a normal-Wishart distribution. For the present study, we chose the hyperparameters
of this distribution maximally uninformative subject to the regularity conditionsdiscussed in [1].

2The score equivalence aspect of the BGe model is not required for DBNs, because edge reversals are not
permissible. However, formulating our method in terms of the BGe score isadvantageous when adapting the
proposed framework to non-linear static Bayesian networks along the lineof [8].
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4.2 The non-stationary dynamic change-point BGe model (cpBGe) (duplicated from the
main paper)

To obtain a non-stationary DBN, we generalize Eq. (15) with anode-specific mixture model:

P (D|G,V,K,θ) =
N∏

n=1

m∏

t=2

Kn∏

k=1

P
(
Xn(t) = Dn,t|πn(t − 1) = D(πn,t−1),θ

k
n

)δVn(t),k

(18)

whereδVn(t),k is the Kronecker delta,V is a matrix of latent variablesVn(t), Vn(t) = k indi-
cates that the realization of nodeXn at timet, Xn(t), has been generated by thekth component
of a mixture withKn components, andK = (K1, . . . ,Kn). Note that the matrixV divides the
data into several disjoined subsets, each of which can be regarded as pertaining to a separate BGe
model with parametersθk

n. The vectorsVn are node-specific, i.e. different nodes can have different
break-points. The probability model defined in Eq.(18) is effectively a mixture model with local
probability distributionsP (Xn|πn,θk

n) and it can hence, under a free allocation of the latent vari-
ables, approximate any probability distribution arbitrarily closely. In the present work, we change
the assignment of data points to mixture components from a free allocation to a change-point pro-
cess3. This effectively reduces the complexity of the latent variable space and incorporates our prior
belief that, in a time series, adjacent time points are likely to be assigned to the same component.
From Eq. (18), the marginal likelihood conditional on the latent variablesV is given by

P (D|G,V,K)=

∫
P (D|G,V,K,θ)P (θ)dθ =

N∏

n=1

Kn∏

k=1

Ψ(Dπn

n [k,Vn],G) (19)

Ψ(Dπn

n [k,Vn],G)=

∫ m∏

t=2

P
(
Xn(t) = Dn,t|πn(t − 1) = D(πn,t−1),θ

k
n

)δVn(t),k

P (θk
n|G)dθ

k
n(20)

Eq. (20) is similar to Eq. (17), except that it is restricted to the subsetDπn
n [k,Vn] :=

{(Dn,t,Dπn,t−1) : Vn(t) = k, 2 ≤ t ≤ m}. Hence when the regularity conditions defined in
[1] are satisfied, then the expression in Eq.(20) has a closed-form solution: it is given by Eq. (24) in
[1] restricted to the subset of the data that has been assigned to thekth mixture component (orkth
segment). The joint probability distribution of the proposed cpBGe model is given by:

P (G,V,K,D) = P (D|G,V,K) · P (G) · P (V|K) · P (K)

= P (G) ·
N∏

n=1

{
{P (Vn|Kn) · P (Kn) ·

Kn∏

k=1

Ψ(Dπn

n [k,Vn],G)

}
(21)

In the absence of genuine prior knowledge about the regulatory network structure, we assume for
P (G) a uniform distribution on graphs, subject to a fan-in restriction of |πn| ≤ 3. As prior prob-
ability distributions on the node-specific numbers of mixture componentsKn, P (Kn), we take iid
truncated Poisson distributions with shape parameterλ = 1, restricted to1 ≤ Kn ≤ KMAX

(we setKMAX = 10 in our simulations). The prior distribution on the latent variable vectors,
P (V|K) =

∏N
n=1{P (Vn|Kn), is implicitly defined via the change-point process as follows. We

identifyKn with Kn−1 change-pointsbn = {bn,1, . . . , bn,Kn−1} on the continuous interval[2,m].
For notational convenience we introduce the pseudo change-pointsbn,0 = 2 andbn,Kn

= m. For
nodeXn the observation at time pointt is assigned to thekth component, symbolicallyVn(t) = k,
if bn,k−1 ≤ t < bn,k. Following [4] we assume that the change-points are distributed as the even-
numbered order statistics ofL := 2(Kn − 1) + 1 pointsu1, . . . , uL uniformly and independently
distributed on the interval[2,m]. The motivation for this prior, instead of takingKn uniformly
distributed points, is to encouragea priori an equal spacing between the change-points, i.e. to
discourage mixture components (i.e. segments) that contain only a few observations. The even-
numbered order statistics prior on the change-point locationsbn induces a prior distribution on the
node-specific allocation vectorsVn. Deriving a closed-form expression is involved. However, the
MCMC scheme we discuss in the next section does not sampleVn directly, but is based on local
modifications ofVn based on birth, death and reallocation moves. All that is required for the ac-
ceptance probabilities of these moves areP (Vn|Kn) ratios, which are straightforward to compute.

3This implies that we propose a non-stationary rather than a proper non-linear model.
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4.3 MCMC inference (extended version of the main paper)

We now describe an MCMC algorithm to obtain a sample{Gi,Vi,Ki}i=1,...,I from the posterior
distributionP (G,V,K|D) ∝ P (G,V,K,D) of Eq. (21). We combine the structure MCMC algo-
rithm4 [3, 9] with the change-point model used in [4], and draw on thefact that conditional on the
allocation vectorsV, the model parameters can be integrated out to obtain the marginal likelihood
termsΨ(Dπn

n [k,Vn],G) in closed form, as shown in the previous section. Note that this approach is
equivalent to the idea underlying the allocation sampler proposed in [? ]. The resulting algorithm is
effectively an RJMCMC scheme [4] in the discrete space of network structures and latent allocation
vectors, where the Jacobian in the acceptance criterion is always 1 and can be omitted. With prob-
ability pG = 0.5 we perform a structure MCMC move on the current graphGi and leave the latent
variable matrix and the numbers of mixture components unchanged, symbolically:Vi+1 = V

i and
K

i+1 = K
i. A new candidate graphGi+1 is randomly drawn out of the set of graphsN (Gi) that

can be reached from the current graphGi by deletion or addition of a single edge. The proposed
graphGi+1 is accepted with probability:

A(Gi+1|Gi) = min

{
1,

P (D|Gi+1,Vi,Ki)

P (D|Gi,Vi,Ki)

P (Gi+1)

P (Gi)

|N (Gi)|
|N (Gi+1)|

}
(22)

where|.| is the cardinality, and the marginal likelihood terms have been specified in Eq. (19). The
graph is left unchanged, symbolicallyGi+1 := Gi, if the move is not accepted.

With the complementary probability1 − pG we leave the graphGi unchanged and perform a move
on (Vi,Ki), whereV

i
n is the latent variable vector ofXn in V

i, andK
i = (Ki

1, . . . ,Ki
N ). We

randomly select a nodeXn and change its current number of componentsKi
n via a change-point

birth or death move, or its latent variable vectorV
i
n by a change-point re-allocation move. The

change-point birth (death) move increases (decreases)Ki
n by 1 and may also have an effect onV

i
n.

The change-point reallocation move leavesKi
n unchanged and may have an effect onV

i
n. Under

fairly mild regularity conditions (ergodicity), the MCMC sampling scheme converges to the desired
posterior distribution if the acceptance probabilities for the three change-point moves(Ki

n,Vi
n) →

(Ki+1
n ,Vi+1

n ) are chosen of the formmin(1, R), see [4], with

R =

∏Ki+1
n

k=1 Ψ(Dπn
n [k,Vi+1

n ],G)
∏Ki

n

k=1 Ψ(Dπn
n [k,Vi

n],G)
× A × B (23)

whereA = P (Vi+1
n |Ki+1

n )P (Ki+1
n )/P (Vi

n|Ki
n)P (Ki

n) is the prior probability ratio, andB is the
inverse proposal probability ratio. The exact form of thesefactors depends on the move type and the
formulae were not provided in the main paper:

(i) For a change-point reallocation5 (r) we randomly select one of the existing change-points
bn,j ∈ {bn,1, . . . , bn,Kn−1}, and the replacement valueb†n,j is drawn from a uniform distribution
on [bn,j−1, bn,j+1] wherebn,0 = 2 andbn,Kn

= m. Hence, the proposal probability ratio is one,
the prior probabilitiesP (Ki+1

n ) = P (Ki
n) cancel out, and the remaining prior probability ratio

P (Vi+1
n |Ki+1

n )/P (Vi
n|Ki

n) can be obtained from p.720 in [4]:

Ar =
(bn,j+1 − b†n,j)(b

†
n,j − bn,j−1)

(bn,j+1 − bn,j)(bn,j − bn,j−1)
, Br = 1 (24)

If there is no change-point (Ki
n = 1) the move is rejected and the Markov chain is left unchanged.

(ii) If a change-point birth move (b) onKi
n is proposed, the location of the new change-pointb† is

randomly drawn from a uniform distribution on the interval[2,m]; the proposal probability for this
move isbKi

n
/(m − 2), wherebKi

n
is the (Ki

n-dependent) probability of selecting a birth move. The
reverse death move, which is selected with probabilityd(Ki

n+1), consists in discarding randomly one

4The MCMC algorithm based on Eq.(10) in [? ] is computationally less efficient than when applied to static
DBNs, since the local scores have to be re-computed every time the positions of the change-points change.

5This move is chosen with probability1 − bKi
n
− dKi

n
, wherebKi

n
anddKi

n
are defined below.
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of the (Ki
n + 1) − 1 = Ki

n change-points. The inverse proposal probability ratio is thus given by
B = d(Ki

n+1)(m − 2)/bKi
n
Ki

n. The prior probability ratio is given by the first three factors in the
expression at the bottom of p.720 in [4] (slightly modified toallow for the fact thatKn components
correspond toKn − 1 change-points), and we get:

Ab =
P (Ki

n + 1)

P (Ki
n)

2Ki
n(2Ki

n + 1)

(m − 2)2
(bn,j+1 − b†)(b† − bn,j)

(bn,j+1 − bn,j)
, Bb =

d(Ki
n+1)(m − 2)

bKi
n
Ki

n

(25)

ForKi
n = KMAX the birth of a new change-point is invalid and the Markov chain is left unchanged.

Note that the ratio of the proposal probabilities for birth versus death movesd(Ki
n+1)/bKi

n
can be

chosen such that it cancels out against the prior ratioP (Ki
n + 1)/P (Ki

n), and the expression sim-
plifies:

AbBb =
2(2Ki

n + 1)

(m − 2)

(bn,j+1 − b†)(b† − bn,j)

(bn,j+1 − bn,j)
(26)

(iii) A change-point death move (d) is the reverse of the birth move, and we get:

AdBd =
(m − 2)

2(2Ki
n − 1)

(bn,j+1 − bn,j)

(bn,j+1 − b†)(b† − bn,j)
(27)

5 Implementation of alternative Bayesian network methods included in our
comparative benchmark study

The generalization of theBGe model of Geiger and Heckerman [1] to dynamic Bayesian networks
has been described in Section 3. In analogy, the staticBDe model of Heckerman et al. [7] can
be generalized for dynamic Bayesian networks; e.g. it corresponds to the non-stationary model
in Robinson and Hartemink [10]. We include a slightly modified version of theBGM model of
Grzegorczyk et al. (see [5]) in our comparison. TheBGM model differs from ourcpBGe model in
two aspects. First, the latent variable allocation is common to the whole network, that is, the change-
points are not node-specific. Second, the assignment of datapoints to components is not effected by
a change-point process, but via a free allocation of the latent variables. The second aspect leads to
a more flexible model, which could be useful for static Bayesian networks and iid data rather than
time series. When combined with the node-specific change-points of thecpBGe model, it will lead
to a non-linear rather than non-stationary model, as we havediscussed in the main paper. However,
for time series, employing a free allocation model discardsrelevant information about the structure
of the data. Namely, that under the assumption of a Markoviandependence, adjacent time points are
a priori likely to be governed by the same process. Moreover, the freeallocation model leads to a
higher complexity of the latent variable configuration space, which is likely to adversely affect the
mixing and convergence properties of the MCMC sampler. In order that the comparison between the
two models be not dominated by (1) the different degrees of complexity of the MCMC simulations
or (2) the presence versus absence of prior information about the data structure, we have replaced
the free allocation model originally used forBGM by the change-point process of our own model.
In this way our comparison focuses on the aspect of employingnode-specific rather than common
change-points, that is, it allows us to investigate to what extent this additional model flexibility leads
to an improved network reconstruction accuracy.

We now briefly describe the modifiedBGM model: An allocation vector~V of sizem − 1 de-
scribes the allocation of the time pointst = 2, . . . ,m to theK components, andD(~V,k) denotes all
realizations that are allocated to componentk. For the joint posterior probability we get:

P (G, ~V,K|D) ∝ P (K)P (~V|K)P (G)P (D|G, ~V ,K) (28)

where

P (D|G, ~V,K) =

K∏

k=1

P (D(~V,k)|G) (29)
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and each factorP (D(~V,k)|G) corresponds to a subset of the dataD(~V,k) for which an independent
BGe score can be computed. ForP (K) we take a truncated Poisson distribution withλ = 1
restricted to1 ≤ K ≤ KMAX with KMAX = 10. As in thecpBGe model, we identifyK with K−1
breakpoints on the continuous interval[2,m] and we assume that these breakpoints are distributed
as the even-numbered order statistics of2(K − 1) + 1 points uniformly distributed on[2,m].

As described for thecpBGe model in Section 2 of the main paper, the structure MCMC algorithm
of [9] is then combined with the change-point model of [4]. With probabilitypG = 0.5 a structure
MCMC move is performed on the graphG, and~V andK are left unchanged. A new candidate graph
G† is randomly drawn out of the set of graphsN (G) that can be reached from the current graphG by
deletion or addition of a single edge. The acceptance probability for a move fromG to G† is given
by A = min(1, R), where

R =
P (D|G†, ~V ,K)

P (D|G, ~V ,K)
· P (G†)

P (G)
· |N (G)|
|N (G†)| (30)

and|.| is the cardinality. With the complementary probability1 − pG a breakpoint birth, death, or
re-allocation move is performed on(~V,K) andG is left unchanged. The acceptance probabilities for
these moves(K, ~V) → (K†, ~V†) are of the same functional form:A = min(1, R) where

R =
P (D|G, ~V†,K†)

P (D|G, ~V ,K)
× cM (31)

cM depends on the move type, and can easily be derived as we did for the cpBGe algorithm in
Subsection 4.3. In essence, eachKn has to be replaced byK in the corresponding equations.

Another non-linear model based on node-specific Gaussian mixture models has been proposed by
Ko et al. [8]. In this approach, data are assignednode-specificallyand individually to mixture
components, resulting in high model flexibility. The authors resort to the Bayesian information
criterion (BIC) of [11] for graph selection, which is only a good approximation to the marginal
likelihood in the limit of large data sets. The BIC score of a graphG is defined as follows:

Score(G) = log(P (D|G, θ̂)) − 1

2
|θ̂| log m (32)

whereθ̂ is the maximum likelihood estimate of the unknown parameters, and|θ̂| is the number of
unknown parameters that have been estimated.

The Gaussian mixture model of [8], which we henceforth referto as theGMBIC model, is a node-
specific mixture model with node-specific mixture weight parametersαn,k. Conditional on a fixed
numbers of mixture components:K = (K1, . . . ,Kn) the likelihood of theGMBIC model factorizes
as follows:

P (D|G,K,θ) =

N∏

n=1

m∏

t=2

Kn∑

k=1

αn,kP (Xn(t) = Dn,t|πn(t − 1) = D(πn,t−1),θ
k
n) (33)

The maximum likelihood estimatêθ for the mixture weightsαn,k and parametersθk
n in the model of

Ko et al. (see Eq. (33)) has no closed-form solution. Therefore, Ko et al. [8] apply the EM-algorithm

to obtain a (local) maximum likelihood estimatêθk,†
n andα̂n,k,† (k = 1, . . . ,Kn) for the N joint

probability distributions:

m∏

t=2

Kn∑

k=1

αn,k,†P (Xn(t) = Dn,t, πn(t − 1) = D(πn,t−1),θ
k,†
n ) (34)

and draw on the fact that the marginal probability distribution of the parent nodes inπn is the same
as the joint probability distribution in Eq. (34) with all the parameters corresponding to the child
nodeXn removed. That is, Ko et al. remove all ML estimates corresponding to the child nodeXn
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from θ̂
k,†
n and plug the remaining parameters, symbolically:̂θ

k,‡
n ⊂ θ̂

k,†
n , and the estimated mixture

weightsα̂n,k,‡ := α̂n,k,† (k = 1, . . . ,Kn) into the (marginal) likelihood:

m∏

t=2

Kn∑

k=1

αn,k,‡P (πn(t − 1) = D(πn,t−1),θ
k,‡
n ) (35)

to obtain an approximate6 estimate for the maximum likelihood value of the marginal probability
distribution of the parent nodes inπn. This can be done independently for allN factors (local
distributions) in Eq. (33). Finally, from the definition of conditional probability distributions, Ko et
al. obtain:

P (D|G,K, θ̂) =

N∏

n=1

m∏

t=2

∑Kn

k=1 α̂n,k,†P (Xn(t) = Dn,t, πn(t − 1) = D(πn,t−1), θ̂
k,†
n )

∑Kn

k=1 α̂n,k,†P (πn(t − 1) = D(πn,t−1), θ̂
k,‡
n )

(36)

In essence, for each of theN local (conditional) probability distributions in Eq. (33)
the parameters of the joint posterior probability distributions of Xn and πn, symbolically:

α̂n,1,†, . . . , ̂αn,Kn,†, θ̂
1,†
n , . . . , θ̂Kn,†

n , are maximized independently as parameters of a Gaussian
mixture distribution by applying the EM-algorithm on the data subset:

D(Xn, πn) = {(Dn,t,Dπn,t−1) : 2 ≤ t ≤ m} (37)

The ML estimates for the marginal likelihood of the parent nodes inπn are approximated by remov-
ing all parameters corresponding to the child nodeXn from α̂n,k,† and leaving the mixture weights
α̂n,k,† unchanged (k = 1, . . . ,Kn).

The number of estimated parameters is given by:

|θ̂(G,K)| = Kn − 1 +

N∑

n=1

((|πn| + 1) + (|πn| + 2) · (|πn| + 1)/2)) · Kn (38)

whereK = (K1, . . . ,Kn) are the numbers of mixture components, and|πn| is the cardinality
of the parent node set ofXn. For clarity, we note that(|πn| + 1) expectation parameters and
(|πn| + 2) · (|πn| + 1)/2 covariance parameters have to be estimated for each of theKn mixture
components and that there are(Kn − 1) (unknown) mixture weights.

TheGMBIC score of a graphG is then given by:

S(G|GMBIC) = max

{
log(P (D|G,K, θ̂)) − 1

2
|θ̂(G,K)| log m : K = (K1, . . . ,Kn)

}
(39)

whereby the numbers of mixture components, that is theN elements in the vectorK, can be re-
stricted:1 ≤ Kn ≤ KMAX , andP (D|G,K, θ̂) was defined in Eq. (36). We setKMAX = 10, and
theGMBIC estimator of the network structure is given by the graphG⋆ with the highest score:

S(G⋆|GMBIC) ≥ S(G|GMBIC) (40)

for all possible graphsG. We note that the computational costs for inferring theGMBIC estimator
can be drastically reduced by determining the best parent node setπn for each of theN domain vari-
ablesXn independently, and joining the resulting ’subnetworks’ togenerate a single comprehensive
network for the whole domain. This holds true for dynamic Bayesian networks, where the acyclicity
constraint is satisfied by construction, but was also made asa heuristic assumption in [8], where it
can potentially violate the acyclicity assumption.

6Note that this procedure is exact for a multivariate Gaussian distribution, but not for a mixture of multi-
variate Gaussians.

10



6 Synthetic data

To assess the performance of the proposedcpBGe model, we applied it to synthetic data generated
from four different network structures shown in Figure 1 of the main paper.

Figure 1a in the main paper shows the smallest synthetic network that we considered. It consists of
two domain nodesX andY , and there are two edges, namely a feedback-loopX → X, leading to
autocorrelation in the time seriesX(.), and a second edge fromX to Y , which was modelled by a
piecewise linear process with changing (time-dependent) coefficientβ(t):

X(t + 1) =
√

1 − ε2 · X(t) + ε · φX(t + 1) (41)

Y (t + 1) = β(t) · X(t) + c · φY (t + 1) (42)

whereε ∈ [0, 1], andφX(1), φX(2), . . . , φY (1), φY (2), . . . are iid Normally distributed variables.

Eq. (41) describes the autoregressive processX(.), and
√

1 − ε2 ∈ [0, 1] is the (auto-)correlation
betweenX(t) andX(t + 1) for all time-pointst. That is, the autocorrelation does not vary in
time, and we can tune the autocorrelation straightforwardly by settingε correspondingly. E.g. for
ε = 1 we have a white noise process of iid standard Normally distributed variables, symbolically:
X(t+1) = φX(t+1). Forε = 0 we obtain a processX(.) which is constant in time, symbolically:
X(t+1) = X(t) for all t without any noise injections. We initializeX(1) with a random realization
from a standard Normal variable. ThenX(.) is standard Normally distributed at each time pointt,
for eachε ∈ [0, 1].

From Eq. (42) it can be seen that the relationship betweenX andY is implemented by a piecewise
linear function, whose coefficientβ(t) changes in time. For this 2-node domain we generatem = 41
observations, and for simplicity, we setβ(t) = 1 for the first (2 ≤ t ≤ 11) and the last (32 ≤ t ≤ 41)
ten observations andβ(t) = −1 for the 20 time points in between (12 ≤ t ≤ 31).

Moreover, we decided to specify the noise level in terms of signal-to-noise ratios (SNRs). That is,
we set the coefficientc dependent on the average input signals. To this end we estimate the stan-
dard deviationσ(β(t)X(t)) of the input signalsβ(1)X(1), β(2)X(2), . . . before noise injections in
advance by exhaustive data simulations. Having estimatedσ(β(t)X(t)) by the empirical standard

deviation ̂σ(β(t)X(t)) from the pre-simulated data, we compute the coefficientc as follows:

c =
̂σ(β(t)X(t))

SNR
(43)

whereSNR is the specified signal-to-noise ratio.

The same idea can be used for generating data from the networkshown in Figure 1b of the main
paper. For this 4-node network domain we define:

X(t + 1) =
√

1 − ε2 · X(t) + ε · φX(t + 1)

Y (t + 1) = βY (t) · X(t) + cY · φY (t + 1)

W (t + 1) = βW (t) · X(t) + cW · φW (t + 1)

Z(t + 1) = βZ(t) · X(t) + cZ · φZ(t + 1) (44)

where all noise termsφ.(.) are iid standard Normally distributed variables. We initialize all three
β coefficients with ’+1’ and for the three nodesY , W , andZ that are regulated byX, we flip a
coin to determine whether the corresponding coefficientβ.(t) changes its sign once (from ’+1’ to
’-1’) or twice (that is, from ’+1’ to ’-1’ and later back to ’+1’), and we randomly draw the change-
point locations afterwards. For each of the three variableswe independently draw the change-point
location(s) from uniform distributions (i) over the discrete interval{6, . . . , 36} to avoid change-
points during the first/last five time points, and (ii) under the constraint that there are at least 5 time
points between the two change-point locations when a coefficient changes its sign twice.
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As described for the smaller network the three coefficientscX , cZ , cW can be computed from pre-
simulated data to ensure that a pre-specified signal-to-noise ratio SNR is given, e.g.:

cY =
̂σ(βY (t)X(t))

SNR
(45)

whereSNR is the specified signal-to-noise ratio and ̂σ(βY (t)X(t)) can be estimated from pre-
simulated data.

The same idea can also be used to generate synthetic data for the (slightly-modified) RAF-pathway
shown in Figure 1c of the main paper. Node ’PIP3’ has a recurrent feedback loop:

PIP3(t + 1) =
√

1 − ε2 · PIP3(t) + ε · φPIP3(t + 1) (46)

and the realizations of the other 10 domain nodes are linear combinations of the realizations of
its parent nodes at the preceding time points plus realizations of iid standard Normal distributions
(noise injections). E.g. for ’PIP2’:

PIP2(t + 1) = βPIP3(t) · PIP3(t) + βPLCG(t) · PLCG(t) + cPIP2 · φPIP2(t + 1) (47)

For each node we flip a coin to determine whether its coefficients change their values once or twice,
and we randomly draw the change-point locations independently for each domain node from discrete
uniform distributions under the constraints (i) that thereis no change-point among the first/last 5
observations and (ii) that there are at least 5 time points between change-points. Different from the
regulatory mechanisms for the smaller domains in Figure 1a-b of the main paper, we sample new
coefficientsβ. at each change-point from continuous uniform distributions on the interval[0.5, 2] and
we flip a coin to determine the sign of the new coefficient (i.e.a change-point does not necessarily
imply a change of sign of the coefficients.).

As before, the coefficientsc can be computed from pre-simulated data to ensure that a pre-specified
signal-to-noise ratio (SNR) is given, e.g:

cPIP2 =
̂σ(βPIP3(t)PIP3(t) + βPLCG(t)PLCG(t))

SNR
(48)

Finally, for the network structure shown in Figure 1c of the main paper we generated data using
sinusoidal transfer functions. This leads to a stronger mismatch between the model and the data-
generation mechanism. The details can be found in the main paper.

7 Simulations

In all our simulations, data were standardized to zero mean and marginal variance of 1 for all dimen-
sions. ForBGe, BGM , and ourcpBGe model the hyperparameters of the normal-Wishart prior
were chosen as uninformative as possible subject to certainregulatory conditions discussed in Geiger
and Heckerman [1]:~µ0 = (0, . . . , 0)T andW = IN+1, where~µ0 is an(N +1)-dimensional column
vector andIN+1 is the(N+1)-by-(N+1) identity matrix. The total prior precision parameters were
set to:α = 1 andv = N + 3, whereN is the number of domain variables (nodes). As described
in Section 3 we have(N + 1)-by-(m − 1) data matrices in a dynamic Bayesian networks in which
’direct feedback-loops’ are allowed; hence the covariancematrices are of size(N + 1)-by-(N + 1).
The ’effective’ number of nodes isN + 1; see Section 3 for more details.

For theBDe model of Heckerman et al. [7] the hyperparameters of the Dirichlet prior were also
specified as uninformative as possible, as in Giudici and Castelo [3]. That is the total prior precision
α was set to 1, and we setαi,j,k = α

ri·qi
, whereri is the number of possible values for theith domain
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node andqi is the number of possible discrete realizations that the parent nodesπi of the ith node
can take on.

For the smaller (bigger) network domains we set both the burn-in and the sampling-phase lengths
of our MCMC simulations to 50,000 (500,000) each and sampledevery 1,000 iterations during
the sampling-phase. We note that even for the bigger networkdomains withN = 11 (synthetic
RAF-pathway data) andN = 9 (real Arabidopsis data) nodes each single MCMC simulation for
the proposedcpBGe Bayesian network model was accomplished within few hours using Matlabc©
code on a SunFire X4100M2 machine with MAD Opteron 2224 SE dual-core processor. We ap-
plied the standard diagnostic based on trace plots (see [3])and the potential scale reduction factor
(see [2]) to assure that in this way a sufficient degree of convergence had been reached. That is,
for several data sets from the RAF-pathway and for theArabidopsis thalianadata set we started 5
independent MCMC simulations from different initializations on the same data set, and we com-
puted the potential scale reduction factor (PSRF) based on the marginal edge posterior probabilities
to monitor convergence. As we observed a sufficient degree ofconvergence for all these data sets
(PSFR < 1.2), we reported only the results of the empty-seeded MCMC runsin the main paper.

For the evaluation of the results, we proceeded as follows. For the synthetic study based on the net-
work domains shown in Figure 1 of the main paper, we computed the marginal posterior probabili-
ties of the individual network edges. All MCMC schemes, which were applied to the conventional
Bayesian network models (BDe andBGe), the non-homogeneous mixture Bayesian network model
BGM , and the proposedcpBGe model, output a sample of graphs from the posterior distribution.
For each of these four methods, the marginal edge posterior probability can be estimated from the
fraction of graphs in the MCMC sample that contain the edge ofinterest.

For a fair comparison, we applied theGMBIC model of Ko et al. 10 times independently with
different initializations. In essence, we initialized thek-means clustering algorithm by random re-
alizations ofN(µ, IN ) distributions, whereIN is the identity matrix andµ is a random expectation
vector with entries sampled independently from continuousuniform distributions on[−1, 1]. The
output of the k-means cluster algorithm was then used to initialize the EM-algorithm as described in
Ko et al. [8]. Afterwards, we took for each individual edge the fraction of inferredGMBIC graphs
that contained the edge of interest as the score for this particular edge.

For all mixture models we restricted the maximal number of mixture components toKMAX = 10, a
limit that was never reached in the simulations. The data discretization required for the multinomial
BDe Bayesian network scoring metric was accomplished with the Information Bottleneck algorithm
[6]. More precisely, we first applied quantile discretization to discretize each domain variable inde-
pendently into 20 discrete levels. Afterwards the Information Bottleneck was run until each domain
variable contained three discetization levels. We note that the Information Bottleneck algorithm
merges, for each variable, neighboring discretization levels such that the pairwise information loss
– in terms of the average mutual information between this variable and the others – is minimized.
Therefore, the standard algorithm for static data was modified to take into account (i) that the pair-
wise mutual informationMI between two variablesX andY has to be computed with a time lag
τ = 1 and is given by the average ofMI(X(t), Y (t + 1) andMI(Y (t),X(t + 1), and (ii) that
recurrent feedback loops are valid in dynamic Bayesian networks so that for each domain variable
X the pairwise mutual information betweenX(t) andX(t + 1) has to be included, symbolically
MI(X(t),X(t + 1).

We assessed the network reconstruction accuracy via the area under the ROC (receiver operator
characteristic) curve: AUC; this is a standard criterion that has been applied in numerous related
articles.
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8 Additional figures of the empirical results

In this section we provide additional figures that could – dueto space restrictions – not be included
in the main paper. Figures 1 to 4 show AUC histograms for the synthetic data sets. For each network
structure shown in Figure 1 of the main paper we chose variousparameter settings, and in the main
paper we summarized the results in terms of AUC scatter plots. In this supplementary paper, we
present separate AUC histograms, for each parameter setting separately.

We further note that the conditions of the paired t-test applied in the main paper are not strictly
satisfied, as the data have been generated under different conditions and are therefore not identically
distributed. That is, for each of the four network structures and each of the five methods under com-
parison, we computed average AUC scores for various pre-specified parameter combinations. We
then applied a two-sided paired t-test to test whether the average AUC scores over allh considered
parameter combinations differed significantly. However, as different parameter combination give
rise to different (average) AUC scores, we do not have a sample of identically distributed variables.

In this supplementary material we apply two-sided paired t-tests to each individual parameter com-
bination. As the average AUC scores have been computed from 25 independent data instantiations
for each individual parameter setting for the smaller networks in Figures 1a-c of the main paper,
and from 5 independent data instantiations for each individual parameter setting in Figure 1d of the
main paper, we can compute a p-value for each individual parameter setting. Figures 5 to 9 show
the resulting p-values for each network structure, summarized as heatmatrices. As we considered
h = 20 (networks in Figures 1a-b of the main paper),h = 18 (network in Figure 1c of the main
paper) andh = 15 (network in Figure 1d of the main paper) different parametercombinations (hy-
potheses), we need to address the issue of multiple testing.To this end, we computed the overall
p-value with a family-wise Bonferroni correction for each group ofh pairwise tests. The resulting
(two-sided paired t-test) p-values can be represented as heatmatrices, as shown in Figures 5-9. For
each network structure there are four heatmatrices, in which the AUC scores ofcpBGe were com-
pared with the AUC scores of the four competing models. The colors of the cells of the heatmatrices
indicate whethercpBGe performed better or worse than the corresponding competingmethod. In
this context we distinguished between two significance levels: (1) significantly better or worse after
Bonferroni correction for the number of parameter combinations, i.e. hypothesis to be tested: (cor-
rected p-values:p < 0.025/h or p > (1 − 0.025/h) whereh ∈ {15, 18, 20}), and (2) significantly
better or worse without Bonferroni correction for multipletesting (uncorrected p-values:p < 0.025
or p > 0.975).

The heatmatrix representations in Figures 5-9 reveal a clear trend in favour of the proposedcpBGe
model. For example, in Figures 5 and 6cpBGe performs significantly better at the corrected level
p = 0.025/h thanBGe andBDe for various parameter settings (e.g. see the block of black cells
in the first three columns forSNR = 100, SNR = 10, andSNR = 3 in the corresponding
four heatmatrices) while neitherBGe nor BDe perform significantly better thancpBGe for any
parameter combination. The Gaussian mixture modelGMBIC of Ko et al. performs significantly
worse thancpBGe at the corrected levelp = 0.025/h 10 times for the network in Figure 1a of the
main paper (see black cells in Figure 5) and 6 times for the network in Figure 1b of the main paper
(see black cells in Figure 6) while it performs better thancpBGe only once for these two domains
with N = 2 andN = 4 nodes (see the white cell forSNR = 100 andε = 0.1 in Figure 5). For the
data from the network with a non-linear sinusoid process shown in Figure 1c of the main paper this
trend becomes even more obvious: TheGMBIC model of Ko et al. performs significantly worse
thancpBGe at the corrected levelp = 0.025/h for 17 out ofh = 18 considered parameter settings
(see (b) panels in Figures 7 and 8). Moreover, we note that theproposedcpBGe model is superior to
theGMBIC model at least at the uncorrected levelp = 0.025 for the eighteenth parameter setting.

The BGM model of Grzegorczyk et al. and the proposedcpBGe model both perform approxi-
mately equally well for the networks shown in Figures 1a and 1b of the main paper. That is, there
are only 2 black cells and there is no white cell in the (a) panels of Figure 5 and Figure 6. However,
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Segment 1 Segment 2 Segment 3 Segment 4
Source Mockler Edwards Grzegorcyk Grzegorcyk

et al.(2007) et al. (2006) et al. (2008) et al. (2008)
Time points 12 13 13 13
Time interval 4h 4h 2h 2h
Pretreatment 12h-light 12h-dark 12h-light 12h-dark 10h-light 10h-dark14h-light 14h-dark
entrainment cycle cycle cycle cycle
Measurements Constant Constant Constant Constant

light light light light
Laboratory Kay Lab Miller Lab Miller Lab Miller Lab

Table 1: Overview of the gene expression time series segments for Arabidopsis.

a certain trend in favour ofcpBGe is revealed by the heatmatrix in Figure 6 panel (a), as there are 9
further parameter combinations for whichcpBGe performs better at the uncorrected levelp = 0.025
(dark grey cells) but only one single parameter combination(ε = 0.99 and SNR=3) whereBGM
performs better at the uncorrected levelp = 0.025 (light grey cells). The corresponding three heat-
matrices in Figures 7, 8, and 9 also reveal a trend in favour ofcpBGe. That is,cpBGe performs
more often significantly better thanBGM at the corrected levelp = 0.025/h (black cells) than
vice-versa (white cells). In total there are 9 black cells but there is no white cell in the (a) panels of
these three figures.

Finally, we provide further plots for theArabidopsis thalianatime series gene expression data; see
Figures 10-14. Figure 10 shows the time series obtained under the four experimental conditions
listed in Table 1. Figure 11 shows the posterior probabilities of the change-point locations plotted
against the time axis for the nine circadian genes. The dotted vertical lines indicate the true transi-
tion times (concatenation points) between the different experimental phases. For four of the genes
(LHY, TOC1, PRR9 and PRR5), all known true change-points arecorrectly predicted. Genes PRR5
and PRR9 show various additional change-points; this mightindicate that they are affected by ad-
ditional heterogeneities beyond the four experimental phases. Four of the genes (CCA1, ELF3, GI,
PRR3) show two change-points, at the true locations (ELF3, GI) or with a short time lag (CCA1,
PRR3). For one gene (ELF4) only one change-point is predicted, at the location of the first true
change-point between time series segments 1 and 2. When averaged over all nine genes, the three
true change-points are correctly predicted (see Figure 3, top right panel of the main paper). A com-
parison of Table 1 with the locations of the peaks in Figure 11suggests that gene CCA1 is mainly
affected by a change of the entrainment condition, gene ELF4is mainly affected by factors associ-
ated with the laboratory context, and genes ELF3 and PRR3 aremainly affected by a change of the
sampling time interval (2 versus 4 hours). While we are still seeking a biological corroboration of
these predictions, Figure 11 demonstrates that the additional flexibility of the node-specific change-
point model can be exploited as an exploratory tool for new hypothesis generation. Figures 12 and
13 show complementary representations. Figure 13 shows theposterior distribution of the number
of components for each gene. For some genes the mode of this distribution is equal (TOC1) or close
(LHY) to the chosen number of experimental phases (four). But there are also genes that display
deviations. Note that the posterior distributions are consistent with the predicted change-points in
Figure 11. For instance, gene ELF4, which shows only one predicted change-point in Figure 11, has
a posterior distribution that peaks at two components. GenePRR9, for which we found additional
change-points in Figure 11, has a posterior distribution whose mode is shifted to a higher value,
at 7 components. Again, we suggest that our node-specific change-point model provides a tool for
biological hypothesis generation. When averaging over all node-specific posterior distributions, we
get the distribution shown in the left panel of Figure 14. Themode of this distribution (at 3 compo-
nents) is close to the true number of experimental phases, which is 4. The slight negative bias can be
explained by the fact that we have imposed a restrictive prior in the form of a Poisson distribution
on the number of components, as described in the main paper. Finally, Figure 12 shows another
complementary representation to Figure 11. The panels showco-allocation matrices that indicate
the probability with which two time points are assigned to the same component.The grey shading
indicates probabilities, with white corresponding to a probability of 1, and black corresponding to a
probability of 0. The structures found in Figure 12 are consistent with those of Figures 11 and 13, as
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one can easily convince oneself. When averaging over all node-specific co-allocation matrices, we
get the co-allocation matrix shown in the right panel of Figure 14. Note that the true change-points
related to the four experimental phases are clearly discernible.

16



0

1

ε=
0.

99

SNR=100

0

1

SNR=10

0

1

SNR=3

0

1

SNR=1

0

1

SNR=0.5

0

1

ε=
0.

5

0

1

0

1

0

1

0

1

0

1

ε=
0.

25

0

1

0

1

0

1

0

1

0

1

ε=
0.

1

0

1

0

1

0

1

0

1
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Figure 1: AUC scores for the network with N = 2 shown in Figure 1a of the main paper.
NodeX is autocorrelated with autocorrelation

√
1 − ε2 and the regulatory mechanismsX → Y

is implemented as a piecewise linear process. The figure is arranged as a4-by-5 matrix with cells
corresponding toh = 20 different parameter combinations. In the matrix each row corresponds to
an ε parameter and each column corresponds to anSNR parameter. For each parameter setting
the average AUC scores have been derived from 25 independentdata instantiations. The error bars
correspond to one standard deviation. In each of theh = 20 histograms the 1st bar corresponds to
the BDe model, the second bar to the BGe model, the 3rd bar to theGMBIC model of Ko et al., the
4th bar to theBGM model of Grzegorczyk et al., and the 5th bar to the proposedcpBGe model.
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Figure 2:AUC score histograms for the network withN = 4 nodes shown in Figure 1b of the
main paper. NodeX is autocorrelated with autocorrelation

√
1 − ε2 and the three other regulatory

mechanisms are realized by piecewise linear processes. Thefigure is arranged as a4-by-5 matrix
with cells corresponding toh = 20 different parameter combinations. In the matrix each row
corresponds to anε parameter and each column corresponds to anSNR value. For each parameter
setting the average AUC scores have been derived from25 independent data instantiations. The error
bars correspond to one standard deviation. In each of theh = 20 histograms the 1st bar corresponds
to the BDe model, the second bar to the BGe model, the 3rd bar totheGMBIC model of Ko et al.,
the 4th bar to theBGM model of Grzegorczyk et al., and the 5th bar to the proposedcpBGe model.
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Figure 3:AUC score histograms for the network with N = 4 nodes shown in Figure 1c of the
main paper. NodeZ is co-regulated by three nodesX, Y , andW . While the effects ofX(t) and
Y (t) onZ(t + 1) are linear, nodeW is autocorrelated and a sinusoid signalcW · sin(W (t) is given
to Z(t+1). There are two panels for differentcX , cY coefficients in the figure: (a)cX = cY = 0.25
and (b)cX = cY = 0.5. Both panels are arranged as3-by-3 matrices with cells corresponding
to h = 9 different cW , cZ parameter combinations. In the matrices each row corresponds to a
cW and each column corresponds to acZ coefficient. For each parameter setting the average AUC
scores have been derived from25 independent data instantiations. The error bars correspond to one
standard deviation. In each of theh = 18 histograms the 1st bar corresponds to the BDe model, the
second bar to the BGe model, the 3rd bar to theGMBIC model of Ko et al., the 4th bar to theBGM
model of Grzegorczyk et al., and the 5th bar to the proposedcpBGe model.
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Figure 4:AUC score histograms for the RAF-pathway withN = 11 nodes shown in Figure 1d
of the main paper. NodePIP2 is autocorrelated with autocorrelation

√
1 − ε2 and all other node

interactions are implemented via piecewise linear processes. The figure is arranged as a3-by-5
matrix with cells corresponding toh = 15 different ε (rows) andSNR (columns) combinations.
For each parameter setting the average AUC scores have been derived from5 independent data
instantiations. The error bars correspond to one standard deviation. In each of theh = 15 histograms
the 1st bar corresponds to the BDe model, the second bar to theBGe model, the 3rd bar to the
GMBIC model of Ko et al., the 4th bar to theBGM model of Grzegorczyk et al., and the 5th bar
to the proposedcpBGe model.
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(e) legend

Figure 5:Heatmatrices of significant average AUC score differences for the network with N =
2 nodes shown in Figure 1a of the main paper.For each combination of SNR andε a (two-sided) t-
test for paired samples was employed to test whethercpBGe performed significantly better or worse
than each of the four competing methods. The p-values are visualized by heatmatrices, whereby cells
are black ifcpBGe performed significantly better after family-wise Bonferroni correction and dark
grey if cpBGe performed significantly better only at the (uncorrected) level α = 0.025, that is,
without correction for multiple testing. The cells are white if cpBGe performed significantly worse
after family-wise Bonferroni correction and light grey ifcpBGe performed significantly worse only
at the (uncorrected) levelα = 0.025, that is without correction for multiple testing. If there was no
significant difference at all, the corresponding cells are drawn in a medium grey. In each panel a-d
h = 20 hypothesis were tested and each single p-value was computedfrom 25 data instantiations.
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Figure 6: Heatmatrices of significant differences of AUC scores for the network with N = 4
nodes shown in Figure 1b of the main paper.For each combination of SNR andε a (two-sided)
t-test for paired samples was employed to test whethercpBGe performed significantly better or
worse than each competing method. The p-values are visualized by heatmatrices, whereby cells are
black if cpBGe performed significantly better after family-wise Bonferroni correction and dark grey
if cpBGe performed significantly better only at the (uncorrected) level α = 0.025, that is, without
correction for multiple testing. The cells are white ifcpBGe performed significantly worse after
family-wise Bonferroni correction and light grey ifcpBGe performed significantly worse only at the
levelα = 0.025, that is without correction for multiple testing. If there was no significant difference
at all, the corresponding cells are drawn in a medium grey. Ineach panel a-dh = 20 hypothesis
were tested and each single p-value was computed from 25 independent data instantiations.
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Figure 7: Heatmatrices of significant differences of AUC scores for the network with N =
4 nodes shown in Figure 1c of the main paper withcX = cY = 0.25. For each parameter
combination ofcW andcY a (two-sided) t-test for paired samples was employed to testwhether
cpBGe performed significantly better or worse than each competingmethod. The p-values are
visualized by heatmatrices, whereby cells are black ifcpBGe performed significantly better after
family-wise Bonferroni correction and dark grey ifcpBGe performed significantly better only at the
(uncorrected) levelα = 0.025, that is, without correction for multiple testing. The cells are white
if cpBGe performed significantly worse after family-wise Bonferroni correction and light grey if
cpBGe performed significantly worse only at the (uncorrected) level α = 0.025, that is without
correction for multiple testing. If there was no significantdifference at all, the corresponding cells
are drawn in a medium grey. In each panel a-dh0.25 = 9 hypothesis were tested and each single p-
value was computed from 25 independent data instantiations. To take into consideration that further
h0.5 = 9 hypothesis had to be tested forcX = cY = 0.5 (see Figure 8) a Bonferroni correction for
h = h0.25 + h0.5 = 18 hypothesis in total was used in each panel a-d.
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Figure 8: Heatmatrices of significant differences of AUC scores for the network with N =
4 nodes shown in Figure 1c of the main paper withcX = cY = 0.5. For each parameter
combination ofcW andcY a (two-sided) t-test for paired samples was employed to testwhether
cpBGe performed significantly better or worse than each competingmethod. The p-values are
visualized by heatmatrices, whereby cells are black ifcpBGe performed significantly better after
family-wise Bonferroni correction and dark grey if BGM2 performed significantly better only at the
(uncorrected) levelα = 0.025, that is, without correction for multiple testing. The cells are white
if cpBGe performed significantly worse after family-wise Bonferroni correction and light grey if
cpBGe performed significantly worse only at the (uncorrected) level α = 0.025, that is without
correction for multiple testing. If there was no significantdifference at all, the corresponding cells
are drawn in a medium grey. In each panel a-dh0.5 = 9 hypothesis were tested and each single p-
value was computed from 25 independent data instantiations. To take into consideration that further
h0.25 = 9 hypothesis had to be tested forcX = cY = 0.5 (see Figure 7) a Bonferroni correction for
h = h0.25 + h0.5 = 18 hypothesis in total was used in each panel a-d.
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Figure 9: Heatmatrices of significant differences of AUC scores for RAF pathway shown in
Figure 1d of the main paper. For each combination of SNR andε a (two-sided) t-test for paired
samples was employed to test whethercpBGe performed significantly better or worse than each
competing method. The p-values are visualized by heatmatrices, whereby cells are black ifcpBGe
performed significantly better after family-wise Bonferroni correction and dark grey ifcpBGe per-
formed significantly better only at the (uncorrected) levelα = 0.025, that is, without correction for
multiple testing. The cells are white ifcpBGe performed significantly worse after family-wise Bon-
ferroni correction and light grey ifcpBGe performed significantly worse only at the (uncorrected)
levelα = 0.025, that is without correction for multiple testing. If there was no significant difference
at all, the corresponding cells are drawn in a medium grey. Ineach panel a-dh = 15 hypothesis
were tested and each single p-value was computed from 5 independent data instantiations.
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Figure 10: Overlaid time series plots of the four Arabidopsis thaliana gene expression time
series listed in Table 1.Gene expression levels (y-axis) have been plotted against time (x-axis),
measured in hours. The curves have been drawn in different colors for the four time series: Black
curve: 1st column in Table 1 (time series from Mockler et al.). Red curve: 2nd column in Table 1
(time series from Edwards et al.). Green and blue curve: 3rd and 4th column in Table 1 (two
time series from Grzegorczyk et al.: green:T20 (column 3 in Table 1) and blue:T28 (column 4 in
Table 1)).
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Figure 11:cpBGe inference onArabidopsis thaliana time series data: Node specific posterior
probabilities of transition times for all nine circadian genes. The vertical dotted lines indicate
where a new time series segment starts, that is they mark the first time point of the new segment in
Table 1. Panels (a) and (b) for genes LHY and TOC1 are also shown in the main paper.
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Figure 12:cpBGe inference onArabidopsis thaliana time series data: Node specific connectivity
structure for all nine circadian genes. For each circadian gene a co-allocation matrix is shown.
The grey shading indicates the posterior probability of twotime points being assigned to the same
mixture component, ranging from 0 (black) to 1 (white). Panels (a) and (b) for genes LHY and
TOC1 are also shown in the main paper.
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Figure 13:cpBGe inference onArabidopsis thaliana time series data: Node specific posterior
probabilities of the number of mixture components. For each of the nine circadian genes the
posterior distribution of the number of mixture components(= number of transitions plus one) is
represented as a histogram.
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Figure 14:cpBGe inference onArabidopsis thaliana time series data: Average over all 9 genes.
(a) The average posterior distribution of the number of mixture components (= number of transitions
plus one) over all nine genes is represented as a histogram. (b) Average co-allocation matrix over all
nine circadian genes. The grey shading indicates the posterior probability of two time points being
assigned to the same mixture component, ranging from 0 (black) to 1 (white).
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