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Abstract

This paper examines the generalization properties of online convex programming
algorithms when the loss function is Lipschitz and strongly convex. Our main
result is a sharp bound, that holds with high probability, on the excess risk of the
output of an online algorithm in terms of the average regret. This allows one to
use recent algorithms with logarithmic cumulative regret guarantees to achieve
fast convergence rates for the excess risk with high probability. As a corollary, we
characterize the convergence rate of PEGASOS(with high probability), a recently
proposed method for solving the SVM optimization problem.

1 Introduction

Online regret minimizing algorithms provide some of the most successful algorithms for many ma-
chine learning problems, both in terms of the speed of optimization and the quality of generalization.
Notable examples include efficient learning algorithms for structured prediction [Collins, 2002] (an
algorithm now widely used) and for ranking problems [Crammer et al., 2006] (providing competitive
results with a fast implementation).

Online convex optimization is a sequential paradigm in which at each round, the learner predicts a
vectorwt ∈ S ⊂ R

n, nature responds with a convex loss function,`t, and the learner suffers loss
`t(wt). In this setting, the goal of the learner is to minimize the regret:

T∑

t=1

`t(wt) − min
w∈S

T∑

t=1

`t(w)

which is the difference between his cumulative loss and the cumulative loss of the optimal fixed
vector.

Typically, these algorithms are used to train a learning algorithm incrementally, by sequentially
feeding the algorithm a data sequence,(X1, Y1), . . . , (XT , YT ) (generated in an i.i.d. manner). In
essence, the loss function used in the above paradigm at timet is `(w; (Xt, Yt)), and this leads to a
guaranteed bound on the regret:

RegT =

T∑

t=1

`(wt; (Xt, Yt)) − min
w∈S

T∑

t=1

`(w; (Xt, Yt))

However, in the batch setting, we are typically interested in finding a parameterŵ with good gener-
alization ability, i.e. we would like:

R(ŵ) − min
w∈S

R(w)

to be small, whereR(w) := E [`(w; (X,Y ))] is therisk.



Intuitively, it seems plausible that low regret on an i.i.d. sequence, should imply good generaliza-
tion performance. In fact, for most of the empirically successful online algorithms, we have a set of
techniques to understand the generalization performance of these algorithms on new data via ‘online
to batch’ conversions — the conversions relate the regret of the algorithm (on past data) to the gen-
eralization performance (on future data). These include cases which are tailored to general convex
functions [Cesa-Bianchi et al., 2004] (whose regret isO(

√
T )) and mistake bound settings [Cesa-

Bianchi and Gentile, 2008] (where the the regret could beO(1) under separability assumptions).
In these conversions, we typically chooseŵ to be the average of thewt produced by our online
algorithm.

Recently, there has been a growing body of work providing online algorithms forstronglyconvex
loss functions (i.e.`t is strongly convex), with regret guarantees that are merelyO(lnT ). Such
algorithms have the potential to be highly applicable since many machine learning optimization
problems are in fact strongly convex — either with strongly convex loss functions (e.g. log loss,
square loss) or, indirectly, via strongly convex regularizers (e.g.L2 or KL based regularization).
Note that in the latter case, the loss function itself may only be just convex but a strongly convex reg-
ularizer effectively makes this a strongly convex optimization problem; e.g. the SVM optimization
problem uses the hinge loss withL2 regularization. In fact, for this case, the PEGASOSalgorithm
of Shalev-Shwartz et al. [2007] — based on the online strongly convex programming algorithm of
Hazan et al. [2006] — is a state-of-the-art SVM solver. Also, Ratliff et al. [2007] provide a similar
subgradient method for max-margin based structured prediction, which also has favorable empirical
performance.

The aim of this paper is to examine the generalization properties of online convex programming
algorithms when the loss function is strongly convex (where strong convexity can be defined in a
general sense, with respect to some arbitrary norm|| · ||). Suppose we have an online algorithm
which has some guaranteed cumulative regret bound RegT (e.g. say RegT ≤ lnT with T samples).
Then a corollary of our main result shows that with probability greater than1 − δ lnT , we obtain a
parameter̂w from our online algorithm such that:

R(ŵ) − min
w

R(w) ≤ RegT
T

+ O





√
RegT ln 1

δ

T
+

ln 1
δ

T



 .

Here, the constants hidden in theO-notation are determined by the Lipschitz constant and the strong
convexity parameter of the loss`. Importantly, note that the correction term is of lower order than
the regret — if the regret islnT then the additional penalty isO(

√
ln T
T ). If one naively uses the

Hoeffding-Azuma methods in Cesa-Bianchi et al. [2004], one would obtain a significantly worse
penalty ofO(1/

√
T ).

This result solves an open problem in Shalev-Shwartz et al. [2007], which was on characterizing the
convergence rate of the PEGASOSalgorithm, with high probability. PEGASOSis an online strongly
convex programming algorithm for the SVM objective function — it repeatedly (and randomly)
subsamples the training set in order to minimize the empirical SVM objective function. A corollary
to this work essentially shows the convergence rate of PEGASOS (as a randomized optimization
algorithm) is concentrated rather sharply.

Ratliff et al. [2007] also provide an online algorithm (based on Hazan et al. [2006]) for max-margin
based structured prediction. Our results are also directly applicable in providing a sharper concen-
tration result in their setting (In particular, see the regret bound in Equation 15, for which our results
can be applied to).

This paper continues the line of research initiated by several researchers [Littlestone, 1989, Cesa-
Bianchi et al., 2004, Zhang, 2005, Cesa-Bianchi and Gentile, 2008] which looks at how to convert
online algorithms into batch algorithms with provable guarantees. Cesa-Bianchi and Gentile [2008]
prove faster rates in the case when thecumulative lossof the online algorithm is small. Here,
we are interested in the case where thecumulative regretis small. The work of Zhang [2005] is
closest to ours. Zhang [2005] explicitly goes via the exponential moment method to derive sharper
concentration results. In particular, for the regression problem with squared loss, Zhang [2005] gives
a result similar to ours (see Theorem 8 therein). The present work can also be seen as generalizing
his result to the case where we have strong convexity with respect to a general norm. Coupled with



recent advances in low regret algorithms in this setting, we are able to provide a result that holds
more generally.

Our key technical tool is a probabilistic inequality due to Freedman [Freedman, 1975]. This, com-
bined with a variance bound (Lemma 1) that follows from our assumptions about the loss function,
allows us to derive our main result (Theorem 2). We then apply it to statistical learning with bounded
loss, and to PEGASOSin Section 4.

2 Setting

Fix a compact convex subsetS of some space equipped with a norm‖ ·‖. Let‖ ·‖∗ be the dual norm
defined by‖v‖∗ := sup

w : ‖w‖≤1 v · w. Let Z be a random variable taking values in some space
Z. Our goal is to minimizeF (w) := E [f(w;Z)] overw ∈ S. Here,f : S × Z → [0, B] is some
function satisfying the following assumption.

Assumption LIST. (LIpschitz and STrongly convex assumption)For all z ∈ Z, the function
fz(w) = f(w; z) is convex inw and satisfies:

1. fz has Lipschitz constantL w.r.t. to the norm‖·‖, i.e.∀w ∈ S, ∀λ ∈ ∂fz(w) (∂fz denotes
the subdifferential offz), ‖λ‖∗ ≤ L. Note that this assumption implies∀w,w′ ∈ S,
|fz(w) − fz(w

′)| ≤ L‖w − w
′‖.

2. fz is ν-strongly convexw.r.t. ‖ · ‖, i.e. ∀θ ∈ [0, 1], ∀w,w′ ∈ S,

fz(θw + (1 − θ)w′) ≤ θfz(w) + (1 − θ)fz(w
′) − ν

2
θ(1 − θ)‖w − w

′‖2 .

Denote the minimizer ofF by w
?, w

? := arg min
w∈SF (w). We consider an online setting in

which independent (but not necessarily identically distributed) random variablesZ1, . . . , ZT be-
come available to us in that order. These have the property that

∀t,∀w ∈ S, E [f(w;Zt)] = F (w) .

Now consider an algorithm that starts out with somew1 and at timet, having seenZt, updates the
parameterwt to wt+1. Let Et−1 [·] denote conditional expectation w.r.t.Z1, . . . , Zt−1. Note that
wt is measurable w.r.t.Z1, . . . , Zt−1 and henceEt−1 [f(wt;Zt)] = F (wt).

Define the statistics,

RegT :=

T∑

t=1

f(wt;Zt) − min
w∈S

T∑

t=1

f(w;Zt) ,

DiffT :=

T∑

t=1

(F (wt) − F (w?)) =

T∑

t=1

F (wt) − TF (w?) .

Define the sequence of random variables

ξt := F (wt) − F (w?) − (f(wt;Zt) − f(w?;Zt)) . (1)

SinceEt−1 [f(wt;Zt)] = F (wt) andEt−1 [f(w?;Zt)] = F (w?), ξt is a martingale difference
sequence. This definition needs some explanation as it is important to look at the right martingale
difference sequence to derive the results we want. Even under assumption LIST,1

T

∑
t f(wt;Zt)

and 1
T

∑
t f(w?;Zt) will not be concentrated around1T

∑
t F (wt) and F (w?) respectively at a

rate better thenO(1/
√

T ) in general. But if we look at thedifference, we are able to get sharper
concentration.

3 A General Online to Batch Conversion

The following simple lemma is crucial for us. It says that under assumption LIST, the variance
of the increment in the regretf(wt;Zt) − f(w?;Zt) is bounded by its (conditional) expectation
F (wt) − F (w?). Such a control on the variance is often the main ingredient in obtaining sharper
concentration results.



Lemma 1. Suppose assumption LIST holds and letξt be the martingale difference sequence defined
in (1). Let

Vart−1ξt := Et−1

[
ξ2
t

]

be the conditional variance ofξt givenZ1, . . . , Zt−1. Then, under assumption LIST, we have,

Vart−1ξt ≤
4L2

ν
(F (wt) − F (w?)) .

The variance bound given by the above lemma allows us to prove our main theorem.
Theorem 2. Under assumption LIST, we have, with probability at least1 − 4 ln(T )δ,

1

T

T∑

t=1

F (wt) − F (w?) ≤ RegT

T
+ 4

√
L2 ln(1/δ)

ν

√
RegT

T
+ max

{
16L2

ν
, 6B

}
ln(1/δ)

T

Further, using Jensen’s inequality,1T
∑

t F (wt) can be replaced byF (w̄) wherew̄ := 1
T

∑
t wt.

3.1 Proofs

Proof of Lemma 1.We have,

Vart−1ξt ≤ Et−1

[
(f(wt;Zt) − f(w?;Zt))

2
]

[ Assumption LIST, part 1] ≤ Et−1

[
L2‖wt − w

?‖2
]

= L2‖wt − w
?‖2 . (2)

On the other hand, using part 2 of assumption LIST, we also have for anyw,w′ ∈ S,

f(w;Z) + f(w′;Z)

2
≥ f

(
w + w

′

2
;Z

)
+

ν

8
‖w − w

′‖2 .

Taking expectation this gives, for anyw,w′ ∈ S,

F (w) + F (w′)

2
≥ F

(
w + w

′

2

)
+

ν

8
‖w − w

′‖2 .

Now using this withw = wt,w
′ = w

?, we get

F (wt) + F (w?)

2
≥ F

(
wt + w

?

2

)
+

ν

8
‖wt − w

?‖2

[∵ w
? minimizesF ] ≥ F (w?) +

ν

8
‖wt − w

?‖2 .

This implies that

‖wt − w
?‖2 ≤ 4(F (wt) − F (w?))

ν
(3)

Combining (2) and (3) we get,

Vart−1ξt ≤
4L2

ν
(F (wt) − F (w?))

The proof of Theorem 2 relies on the following inequality for martingales which is an easy conse-
quence of Freedman’s inequality [Freedman, 1975, Theorem 1.6]. The proof of this lemma can be
found in the appendix.
Lemma 3. SupposeX1, . . . , XT is a martingale difference sequence with|Xt| ≤ b. Let

VartXt = Var (Xt |X1, . . . , Xt−1) .

LetV =
∑T

t=1 VartXt be the sum of conditional variances ofXt’s. Further, letσ =
√

V . Then we
have, for anyδ < 1/e andT ≥ 3,

Prob

(
T∑

t=1

Xt > max
{

2σ, 3b
√

ln(1/δ)
}√

ln(1/δ)

)
≤ 4 ln(T )δ .



Proof of Theorem 2.By Lemma 1, we haveσ :=
√∑T

t=1 Vartξt ≤
√

4L2

ν DiffT . Note that|ξt| ≤
2B because ourf has range[0, B]. Therefore, Lemma 3 gives us that with probability at least
1 − 4 ln(T )δ, we have

T∑

t=1

ξt ≤ max
{

2σ, 6B
√

ln(1/δ)
}√

ln(1/δ) .

By definition ofRegT ,

DiffT −RegT ≤
T∑

t=1

ξt

and therefore, with probability,1 − 4 ln(T )δ, we have

DiffT −RegT ≤ max

{
4

√
L2

ν
DiffT , 6B

√
ln(1/δ)

}
√

ln(1/δ) .

Using Lemma 4 below to solve the above quadratic inequality forDiffT , gives
∑T

t=1 F (wt)

T
− F (w?) ≤ RegT

T
+ 4

√
L2 ln(1/δ)

ν

√
RegT

T
+ max

{
16L2

ν
, 6B

}
ln(1/δ)

T

The following elementary lemma was required to solve a recursive inequality in the proof of the
above theorem. Its proof can be found in the appendix.
Lemma 4. Supposes, r, d, b,∆ ≥ 0 and we have

s − r ≤ max{4
√

ds, 6b∆}∆ .

Then, it follows that
s ≤ r + 4

√
dr∆ + max{16d, 6b}∆2 .

4 Applications

4.1 Online to Batch Conversion for Learning with Bounded Loss

Suppose(X1, Y1), . . . , (XT , YT ) are drawn i.i.d. from a distribution. The pairs(Xi, Yi) belong
to X × Y and our algorithm are allowed to make predictions in a spaceD ⊇ Y. A loss function
` : D×Y → [0, 1] measures quality of predictions. Fix a convex setS of some normed space and a
functionh : X × S → D. Let our hypotheses class be{x 7→ h(x;w) |w ∈ S}.

On inputx, the hypothesis parameterized byw predictsh(x;w) and incurs loss̀(h(x;w), y) if the
correct prediction isy. Therisk of w is defined by

R(w) := E [`(h(X;w), Y )]

and letw? := arg minw∈S R(w) denote the (parameter for) the hypothesis with minimum risk. It
is easy to see that this setting falls under the general framework given above by thinking of the pair
(X,Y ) asZ and settingf(w;Z) = f(w; (X,Y )) to be`(h(X;w), Y ). Note thatF (w) becomes
the riskR(w). The range off is [0, 1] by our assumption about the loss functions soB = 1.

Suppose we run an online algorithm on our data that generates a sequence of hypothesesw0, . . . ,wT

such thatwt is measurable w.r.t.X<t, Y<t. Define the statistics,

RegT :=
T∑

t=1

`(h(Xt;wt), Yt) − min
w∈S

T∑

t=1

`(h(Xt;w), Yt) ,

DiffT :=
T∑

t=1

(R(wt) − R(w?)) =
T∑

t=1

R(wt) − TR(w?) .

At the end, we output̄w := (
∑T

t=1 wt)/T . The following corollary then follows immediately from
Theorem 2. It bounds theexcess riskR(w̄) − R(w?).



Corollary 5. Suppose assumption LIST is satisfied forf(w; (x, y)) := `(h(x;w), y). Then we
have, with probability at least1 − 4 ln(T )δ,

R(w̄) − R(w?) ≤ RegT

T
+ 4

√
L2 ln(1/δ)

ν

√
RegT

T
+ max

{
16L2

ν
, 6

}
ln(1/δ)

T

Recently, it has been proved [Kakade and Shalev-Shwartz, 2008] that if assumption LIST is satisfied
for w 7→ `(h(x;w), y) then there is an online algorithm that generatesw1, . . . ,wT such that

RegT ≤ L2(1 + lnT )

2ν
.

Plugging it in the corollary above gives the following result.

Corollary 6. Suppose assumption LIST is satisfied forf(w; (x, y)) := `(h(x;w), y). Then there is
an online algorithm that generatesw1, . . . ,wT and in the end outputs̄w such that, with probability
at least1 − 4 ln(T )δ,

R(w̄) − R(w?) ≤ L2 lnT

νT
+

4L2
√

lnT

νT

√

ln

(
1

δ

)
+ max

{
16L2

ν
, 6

}
ln(1/δ)

T
,

for anyT ≥ 3.

4.2 High Probability Bound for PEGASOS

PEGASOS[Shalev-Shwartz et al., 2007] is a recently proposed method for solving the primal SVM
problem. Recall that in the SVM optimization problem we are givenm example, label pairs
(xi, yi) ∈ R

d × {±1}. Assume that‖xi‖ ≤ R for all i where‖ · ‖ is the standardL2 norm.
Let

F (w) =
λ

2
‖w‖2 +

1

m

m∑

i=1

`(w; (xi, yi)) (4)

be the SVM objective function. The loss function`(w; (x, y)) = [1 − y(w · x)]+ is the hinge loss.
At time t, PEGASOStakes a (random) approximation

f(w;Zt) =
λ

2
‖w‖2 +

1

k

∑

(x,y)∈Zt

`(w; (x, y)) ,

of the SVM objective function to estimate the gradient and updates the current weight vectorwt to
wt+1. HereZt is a random subset of the data set of sizek. Note thatF (w) can be written as

F (w) = E

[
λ2

2
‖w‖2 + `(w;Z)

]

whereZ is an example(xi, yi) drawn uniformly at random from them data points. It is also easy
to verify that

∀w, E [f(w;Zt)] = F (w) .

It can be shown thatw? := arg minF (w) will satisfy ‖w?‖ ≤ 1/
√

λ so we set

S =

{
w ∈ R

d : ‖w‖ ≤ 1√
λ

}
.

For anyz that is a subset of the data set, the function

w 7→ f(w; z) =
λ

2
‖w‖2 +

1

|z|
∑

(x,y)∈z

`(w; (x, y))

is Lipschitz onS with Lipschitz constantL =
√

λ + R and isλ-strongly convex. Alsof(w; z) ∈
[0, 3/2 + R/

√
λ]. So, the PEGASOSsetting falls under our general framework and satisfies assump-

tion LIST.



Theorem 1 in Shalev-Shwartz et al. [2007] says, for anyw, T ≥ 3,

T∑

t=1

f(wt;Zt) ≤
T∑

t=1

f(w;Zt) +
L2 lnT

λ
, (5)

whereL =
√

λ + R. It was noted in that paper that plugging inw = w
? and taking expectations,

we easily get

EZ1,...,ZT

[
T∑

t=1

F (wt)

]
≤ TF (w?) +

L2 lnT

λ
.

Here we use Theorem 2 to prove an inequality that holds with high probability, not just in expecta-
tion.

Corollary 7. Let F be the SVM objective function defined in(4) andw1, . . . ,wT be the sequence
of weight vectors generated by thePEGASOSalgorithm. Further, letw? denote the minimizer of the
SVM objective. Then, with probability1 − 4δ ln(T ), we have

T∑

t=1

F (wt)−TF (w?) ≤ L2 lnT

λ
+

4L2
√

lnT

λ

√

ln

(
1

δ

)
+max

{
16L2

λ
, 9 +

6R√
λ

}
ln

(
1

δ

)
, (6)

for anyT ≥ 3. Therefore, assumingR = 1, we have, forλ small enough, with probability at least
1 − δ,

1

T

T∑

t=1

F (wt) − F (w?) = O

(
ln T

δ

λT

)
.

Proof. Note that (5) implies thatRegT ≤ L2 ln T
λ . The corollary then follows immediately from

Theorem 2 by plugging inν = λ andB = 3/2 + R/
√

λ.
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Appendix

Proof of Lemma 3.Note that a crude upper bound onVartXt is b2. Thus,σ ≤ b
√

T . We choose a
discretization0 = α−1 < α0 < . . . < αl such thatαi+1 = rαi for i ≥ 0 andαl ≥ b

√
T . We will

specify the choice ofα0 andr shortly. We then have, for anyc > 0,

Prob

(
∑

t

Xt > c max{rσ, α0}
√

ln(1/δ)

)

=

l∑

j=0

Prob

(∑
t
Xt > c max{rσ, α0}

√
ln(1/δ)

& αj−1 < σ ≤ αj

)

≤
l∑

j=0

Prob

(∑
t
Xt > cαj

√
ln(1/δ)

& α2
j−1 < V ≤ α2

j

)

≤
l∑

j=0

Prob

(
∑

t

Xt > cαj

√
ln(1/δ) & V ≤ α2

j

)

(?)

≤
l∑

j=0

exp



 −c2α2
j ln(1/δ)

2α2
j + 2

3

(
cαj

√
ln(1/δ)

)
b





=

l∑

j=0

exp



 −c2αj ln(1/δ)

2αj + 2
3

(
c
√

ln(1/δ)
)

b





where the inequality(?) follows from Freedman’s inequality. If we now chooseα0 = bc
√

ln(1/δ)

then αj ≥ bc
√

ln(1/δ) for all j and hence every term in the above summation is bounded by

exp
(

−c2 ln(1/δ)
2+2/3

)
which is less thenδ if we choosec = 5/3. Setr = 2/c = 6/5. We want

α0r
l ≥ b

√
T . Sincec

√
ln(1/δ) ≥ 1, choosingl = logr(

√
T ) ensures that. Thus we have

Prob

(
T∑

t=1

Xt >
5

3
max{6

5
σ,

5

3
b
√

ln(1/δ)}
√

ln(1/δ)

)

= Prob

(
∑

t

Xt > cmax{rσ, α0}
√

ln(1/δ)

)

≤ (l + 1)δ = (log6/5(
√

T ) + 1)δ

≤ (6 ln(
√

T ) + 1)δ ≤ 4 ln(T )δ . (∵ T ≥ 3)

Proof of Lemma 4.The assumption of the lemma implies that one of the following inequalities
holds:

s − r ≤ 6b∆2 s − r ≤ 4
√

ds∆ . (7)

In the second case, we have (√
s
)2 − (4

√
d∆)

√
s − r ≤ 0

which means that
√

s should be smaller than the larger root of the above quadratic. This gives us,

s = (
√

s)2 ≤
(
2
√

d∆ +
√

4d∆2 + r
)2

≤ 4d∆2 + 4d∆2 + r + 4
√

4d2∆4 + d∆2r

[∵
√

x + y ≤
√

x +
√

y] ≤ 8d∆2 + r + 8d∆2 + 4
√

dr∆

≤ r + 4
√

dr∆ + 16d∆2 . (8)

Combining (7) and (8) finishes the proof.


