
Appendix

A common sampling technique often used in this setting is the Metropolis-Hastings algorithm, which
is a Markov chain Monte Carlo (MCMC) method. The M-H acceptance probability for moving from
state x to state x′ is shown below, where each state is a DBN.

α(x, x′) = min


1,

p(D|x′)

p(D|x)
× p(x′ → x)

p(x → x′)

ff
= min
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p(D|x′)

p(D|x)| {z }
likelihood ratio

× p(m′)p(x|x′, m′)

p(m)p(x′|x, m)| {z }
proposal ratio
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where m is the move type that allows for a transition from state x to x′ and m′ is the reverse move

type for a transition from state x′ back to state x. The proposal ratio can be split into two terms:
one is the ratio of the proposal probabilities for move types and the other is the ratio of selecting a
particular state given the current state and the move type. The choice of scoring metric determines
the likelihoods, and often p(m′) and p(m) are chosen a priori to be simple to calculate or to actually
cancel out.

Move type M
Proposal p(M′)

p(M)
p(x|x′,M′)
p(x′|x,M)probability

(M1) add edge to G1 Pa
Pd
Pa

(E1+1)−1

(npmax−E1)−1 = npmax−E1
E1+1

(M2) delete edge from G1 Pd
Pa
Pd

(npmax−E1+1)−1

E
−1
1

= E1
npmax−E1+1

(M3) add edge to ∆gi Pae
Pde
Pae

m−1(Si+1)−1

m−1(Smax−Si)
−1 = Smax−Si

Si+1

(M4) delete edge from ∆gi Pde
Pae
Pde

m−1(Smax−Si+1)−1

m−1S
−1
i

= Si
Smax−Si+1

(M5) move edge from ∆gi to ∆gj Pme 1 (m−1)−1(
P

i Si)
−1

(m−1)−1(
P

i Si)
−1 = 1

(M6) locally shift ti Pst 1 (2d+1)−1

(2d+1)−1 = 1

(M7) merge ∆gi and ∆gi+1 Pm
Ps
Pm

(m−1)−12(Si+Si+1)−1
“Si+Si+1

Si

”−1

(m−1)−1 = 2

(Si+Si+1)
“Si+Si+1

Si

”

(M8) split ∆gi Ps
Pm
Ps

(m−1)−1

(m−1)−1(Si/2)−1
“

Si
x

”−1 = (Si/2)
`Si

x

´
(M9) create new ∆gi Pag

Pdg
Pag

(m+1)−1

(N−m)−1n−2 = (N−m)n2

m+1

(M10) delete ∆gi Pdg
Pag
Pdg

(N−m−1)−1n−2

m−1 = m
(N−m−1)n2

K
N

K
T

K
N

U
T

U
N

U
T

Table 1: E1 is the total number of edges in G1, Smax is the maximum number of transitions allowed
in a single transition time, pmax is the maximum parent set size, and Si is the number of edge changes
in the set ∆gi. The proposal ratio is the product of the last two columns. The KNKT setting uses
moves (M1) − (M5), KNUT uses moves (M1) − (M6), and UNUT uses moves (M1) − (M10), in
each case with the proposal probabilities appropriately normalized to add to 1.
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All of the F1-measures for the nsDBNs learned under the UNUT setting are shown in Table 2 below.

A
λs

1 2 3 4 5

0.4341 0.9423 0.9469 0.9738 0.9912 1

0.6760 0.9562 0.9553 0.9906 0.9909 2

0.9206 0.9553 0.9729 0.9731 0.9905 5 λm

0.9264 0.9550 0.9657 0.9829 0.9791 10

0.8804 0.8806 0.9042 0.8922 0.8807 50

B

λs

1 3 5

0.9489 0.9510 0.9468 1

0.9377 0.9521 0.9356 2 λm

0.9531 0.9459 0.9398 5

Table 2: F1-measure for different values of λs and λm under the UNUT setting. F1-measures over
0.9 are shaded in light gray and the best score is shown in bold. A: F1-measures for the nine variable
dataset defined by the nsDBN in Figure 1A. B: F1-measures for the large 100 variable dataset.
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