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1 Second order approximation of a submanifold
in Euclidean space

Given an m-dimensional submanifold M isometrically embedded in R?®, we want
to approximate M up to second-order around a given point p € M.

Proposition 1 Let z',...,2™ be the coordinates associated with an orthonor-
mal basis of the tangent space at T,M. Then in Cartesian coordinates z of R?,
the manifold can be approximated up to second order as

2(x) = (z!,... ,xm,fmﬂ(a:), o ),

where f'(x) = EZZ@:l Hgﬁxaxﬁ and wa is the second fundamental form of M
at p. If M is a hypersurface, then we have z(z) = (xt,..., 271, f*(x)), and f*
18 given as

if the coordinates x® are aligned with the principal directions and k; are the
principal curvatures of M at p.

Proof: Let «v(t) be a geodesic on M with v(0) = p. Then we can do a Taylor

expansion of v around p with respect to the ambient space R?,

1(1) = 7(0) + 7/ (0)t + 57" (O)F + O(F).

We have 7/(0) € T, M and, since M is isometrically embedded, [[7'(0)[l7 5, =
17" (0}l e = [V (0)
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That means parametrization by arclength is the same in M and R®. Now
if v(t) is parameterized by arclength which is equivalent to ||7/(t)||z. = 1, then
we have

0= 2 W OIZ =26 (0,7 D).
However, we even know by the relation between extrinsic and intrinsic derivative,
see [1, p. 140], that

7" =Dy +11(,7"),

where II : T,M x T,M — N,M is the second fundamental form or extrinsic
curvature of M, N,M is the normal space of M (the subspace orthogonal to
the tangent space T,M in R*) and D;y' = MV.,4'. Since v is a geodesic, we
have Dyy" = 0 (the intrinsic acceleration is zero) and get

7' =1, 7).

Note, that v € N, M. Plugging this into the Taylor expansion of the geodesic,
we obtain

t2
(1) = 7(0) + 7/ (0)t + T, 7) + OF),
where v/(0) € T,M and II(y,~') € N,M. We deduce that, if we introduce
orthonormal coordinates z* for the subspace p+ T, M with origin at p € M and

extend this to a full Cartesian coordinate system of R®, we get the local second
order approximation of M as

(x:l? tt 7xm’ fm+1(x)’ ct fs(x))7
where fi(z) = > e s=1 Hfmxaxﬁ and wa is the second fundamental form de-

scribed in the local coordinate system (note that Hfm = 0if ¢ < m since
I’
(50w, 525) € NpM).

For a hypersurface M the normal space N, M is one-dimensional, II(X,Y) =
h(X,Y)N, where N is the normal vector at p and h : T,M x T,M — R. Thus
in coordinates h is just a (s — 1) x (s — 1)- symmetric matrix with eigenvalues
ki, t=1,...,8 — 1 and thus in the basis formed by the eigenvectors we get

s—1
hX,Y) =) kaXY*,
a=1

and thus we get the second-order approximation (z?, ..., %! f%(z)) with f*(z) =

s—1 a .o
Y et Ko™ x®. O

2 Representation of the second derivative of ¥
using the second-order approximation of the
input manifold

As above, assume that M is an m-dimensional submanifold in R*.



Proposition 2 Using a second-order approximation of M centered at p € M,
we get in Cartesian coordinates z = (x',... 2™, fmHl(x),..., f*(x)) that

9a3(0) = dap, MF[;,Y(O) =0.
Furthermore, we have at p € M,

o> OUH 4,y o>y L ouH
0280z Oz BO‘} N [W +r:m+1 92" Hﬂa}

Proof: The function 7 : R™ — R*® defined as

(', ..., 2™) = i(x) = (2. 2™ N ), fR (),

can be seen as the embedding of the second order approximation of M into R*.
The induced metric is given as

r=1

, ok \ 2
, oir oir { 1+ S (85) ifa=5,
aff = =
Oxe OxP ofF afk .
bemi1 Gemoers o # B

Since the functions f* are all quadratic in the coordinates z®, we immediately
see that go3(0) = do3. Moreover, we have

890‘5 _ { 2 E’C m+1 8a:’2YSw“ Ozl‘:’ . - if o = ﬁ’
- _9%fk of of* _o°f :
& o _O°fT
Oz Y h=m+1 Fe79z= 557 T Bam amazﬂ)v if a# B
L ; . . . 99 ..
Again, since f* are quadratic functions in % we have aglf = 0 at the origin.

Now, the Christoffel symbols in local coordinates ¢ are given as [1, p. 70]

1
]_"35 = 5g’yp(a&gﬁp + aﬁgap - apg(lﬁ),

and with the previous result, we also obtain I’zﬁ = 0 at the origin. Moreover,
we have
R B O2UH 92" Ozt L U 922"
0xPOre  0z70z% Oz OxP 0z Ox0zP’

and

9 1, ifr=aq,
8“{07 if r <m and r # «,
r giw if r>m,

0%z" { 0, if r <m,

OxBOre 17 5 if r > m,



and thus, we obtain at x = 0,

i G (O S L T
AxBixr®  9zrdz¢ 9z dxP  9z" Hr*dxP
oo Z owH

0280z% 9z P
r=m-+1

For a hypersurface M we have II;, = N"hgs, where h is the so called shape
operator. If the coordinates x® are aligned with the principal directions (the
eigenvectors of hg,), we get Il , =0 if r < s and g, = Kalas- O
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