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Abstract

For undiscounted reinforcement learning in Markov decision processes (MDPs)
we consider the total regret of a learning algorithm with respect to an optimal
policy. In order to describe the transition structure of an MDP we propose a new
parameter: An MDP has diameter D if for any pair of states s, s′ there is a policy
which moves from s to s′ in at most D steps (on average). We present a rein-
forcement learning algorithm with total regret Õ(DS

√
AT ) after T steps for any

unknown MDP with S states, A actions per state, and diameter D. This bound
holds with high probability. We also present a corresponding lower bound of
Ω(
√

DSAT ) on the total regret of any learning algorithm.

1 Introduction

In a Markov decision process (MDP) M with finite state space S and finite action space A, a learner
in state s ∈ S needs to choose an action a ∈ A. When executing action a in state s, the learner
receives a random reward r with mean r̄(s, a) according to some distribution on [0, 1]. Further,
according to the transition probabilities p (s′|s, a), a random transition to a state s′ ∈ S occurs.

Reinforcement learning of MDPs is a standard model for learning with delayed feedback. In contrast
to important other work on reinforcement learning — where the performance of the learned policy is
considered (see e.g. [1, 2] and also the discussion and references given in the introduction of [3]) —
we are interested in the performance of the learning algorithm during learning. For that, we compare
the rewards collected by the algorithm during learning with the rewards of an optimal policy.

In this paper we will consider undiscounted rewards. The accumulated reward of an algorithm A
after T steps in an MDP M is defined as

R(M,A, s, T ) :=
∑T

t=1 rt,

where s is the initial state and rt are the rewards received during the execution of algorithm A. The
average reward

ρ(M,A, s) := lim
T→∞

1
T E [R(M,A, s, T )]

can be maximized by an appropriate stationary policy π : S → A which defines an optimal action
for each state [4].

The difficulty of learning an MDP does not only depend on its size (given by the number of states
and actions), but also on its transition structure. In order to measure this transition structure we
propose a new parameter, the diameter D of an MDP. The diameter D is the time it takes to move
from any state s to any other state s′, using an appropriate policy for this pair of states s and s′:
Definition 1. Let T (s′|M,π, s) be the first (random) time step in which state s′ is reached when
policy π is executed on MDP M with initial state s. Then the diameter of M is given by

D(M) := max
s,s′∈S

min
π:S→A

E [T (s′|M,π, s)] .



A finite diameter seems necessary for interesting bounds on the regret of any algorithm with respect
to an optimal policy. When a learner explores suboptimal actions, this may take him into a “bad
part” of the MDP from which it may take about D steps to reach again a “good part” of the MDP.
Hence, the learner may suffer regret D for such exploration, and it is very plausible that the diameter
appears in the regret bound.

For MDPs with finite diameter (which usually are called communicating, see e.g. [4]) the optimal
average reward ρ∗ does not depend on the initial state (cf. [4], Section 8.3.3), and we set

ρ∗(M) := ρ∗(M, s) := max
π

ρ(M,π, s).

The optimal average reward is the natural benchmark for a learning algorithm A, and we define the
total regret of A after T steps as1

∆(M,A, s, T ) := Tρ∗(M)−R(M,A, s, T ).

In the following, we present our reinforcement learning algorithm UCRL2 (a variant of the UCRL
algorithm of [5]) which uses upper confidence bounds to choose an optimistic policy. We show
that the total regret of UCRL2 after T steps is Õ(D|S|

√
|A|T ). A corresponding lower bound of

Ω(
√

D|S||A|T ) on the total regret of any learning algorithm is given as well. These results establish
the diameter as an important parameter of an MDP. Further, the diameter seems to be more natural
than other parameters that have been proposed for various PAC and regret bounds, such as the mixing
time [3, 6] or the hitting time of an optimal policy [7] (cf. the discussion below).

1.1 Relation to previous Work

We first compare our results to the PAC bounds for the well-known algorithms E3 of Kearns,
Singh [3], and R-Max of Brafman, Tennenholtz [6] (see also Kakade [8]). These algorithms achieve
ε-optimal average reward with probability 1−δ after time polynomial in 1

δ , 1
ε , |S|, |A|, and the mix-

ing time Tmix
ε (see below). As the polynomial dependence on ε is of order 1/ε3, the PAC bounds

translate into T 2/3 regret bounds at the best. Moreover, both algorithms need the ε-return mixing
time Tmix

ε of an optimal policy π∗ as input parameter. This parameter Tmix
ε is the number of steps

until the average reward of π∗ over these Tmix
ε steps is ε-close to the optimal average reward ρ∗.

It is easy to construct MDPs of diameter D with Tmix
ε ≈ D/ε. This additional dependency on ε

further increases the exponent in the above mentioned regret bounds for E3 and R-max. Also, the
exponents of the parameters |S| and |A| in the PAC bounds of [3] and [6] are substantially larger
than in our bound.

The MBIE algorithm of Strehl and Littman [9, 10] — similarly to our approach — applies confidence
bounds to compute an optimistic policy. However, Strehl and Littman consider only a discounted
reward setting, which seems to be less natural when dealing with regret. Their definition of regret
measures the difference between the rewards2 of an optimal policy and the rewards of the learning
algorithm along the trajectory taken by the learning algorithm. In contrast, we are interested in the
regret of the learning algorithm in respect to the rewards of the optimal policy along the trajectory
of the optimal policy.

Tewari and Bartlett [7] propose a generalization of the index policies of Burnetas and Katehakis [11].
These index policies choose actions optimistically by using confidence bounds only for the estimates
in the current state. The regret bounds for the index policies of [11] and the OLP algorithm of [7]
are asymptotically logarithmic in T . However, unlike our bounds, these bounds depend on the gap
between the “quality” of the best and the second best action, and these asymptotic bounds also hide
an additive term which is exponential in the number of states. Actually, it is possible to prove a
corresponding gap-dependent logarithmic bound for our UCRL2 algorithm as well (cf. Remark 4
below). This bound holds uniformly over time and under weaker assumptions: While [7] and [11]
consider only ergodic MDPs in which any policy will reach every state after a sufficient number of
steps, we make only the more natural assumption of a finite diameter.

1It can be shown that maxAE [R(M, A, s, T )] = Tρ∗(M) + O(D(M)) and maxA R(M, A, s, T ) =

Tρ∗(M) + Õ
(√

T
)

with high probability.
2Actually, the state values.



2 Results

We summarize the results achieved for our algorithm UCRL2 which is described in the next section,
and also state a corresponding lower bound. We assume an unknown MDP M to be learned, with
S := |S| states, A := |A| actions, and finite diameter D := D(M). Only S and A are known to the
learner, and UCRL2 is run with parameter δ.

Theorem 2. With probability 1−δ it holds that for any initial state s ∈ S and any T > 1, the regret
of UCRL2 is bounded by

∆(M, UCRL2, s, T ) ≤ c1 ·DS
√

TA log T
δ ,

for a constant c1 which is independent of M , T , and δ.

It is straightforward to obtain from Theorem 2 the following sample complexity bound.

Corollary 3. With probability 1− δ the average per-step regret is at most ε for any

T ≥ c2
D2S2A

ε2
log
(

DSA

δε

)
steps, where c2 is a constant independent of M .

Remark 4. The proof method of Theorem 2 can be modified to give for each initial state s and T > 1
an alternative upper bound on the expected regret,

E [∆(M, UCRL2, s, T )] ≤ c3
D2S2A log T

g
,

where g := ρ∗(M) − maxπ,s{ρ(M,π, s) : ρ(M,π, s) < ρ∗(M)} is the gap between the optimal
average reward and the second best average reward achievable in M .

These new bounds are improvements over the bounds that have been achieved in [5] for the original
UCRL algorithm in various respects: the exponents of the relevant parameters have been decreased
considerably, the parameter D we use here is substantially smaller than the corresponding mixing
time in [5], and finally, the ergodicity assumption is replaced by the much weaker and more natural
assumption that the MDP has finite diameter.

The following is an accompanying lower bound on the expected regret.

Theorem 5. For some c4 > 0, any algorithm A, and any natural numbers S, A ≥ 10, D ≥
20 logA S, and T ≥ DSA, there is an MDP 3 M with S states, A actions, and diameter D, such
that for any initial state s ∈ S the expected regret of A after T steps is

E [∆(M,A, s, T )] ≥ c4 ·
√

DSAT .

In a different setting, a modification of UCRL2 can also deal with changing MDPs.

Remark 6. Assume that the MDP (i.e. its transition probabilities and reward distributions) is al-
lowed to change ` times up to step T , such that the diameter is always at most D (we assume an
initial change at time t = 1). In this model we measure regret as the sum of missed rewards com-
pared to the ` policies which are optimal after the changes of the MDP. Restarting UCRL2 with
parameter δ/`2 at steps di3/`2e for i = 1, 2, 3 . . ., this regret is upper bounded by

c5 · `
1
3 T

2
3 DS

√
A log T

δ

with probability 1− 2δ.

MDPs with a different model of changing rewards have already been considered in [12]. There, the
transition probabilities are assumed to be fixed and known to the learner, but the rewards are allowed
to change in every step. A best possible upper bound of O(

√
T ) on the regret against an optimal

stationary policy, given all the reward changes in advance, is derived.

3The diameter of any MDP with S states and A actions is at least logA S.



Input: A confidence parameter δ ∈ (0, 1).
Initialization: Set t := 1, and observe the initial state s1.
For episodes k = 1, 2, . . . do

Initialize episode k:
1. Set the start time of episode k, tk := t.
2. For all (s, a) in S ×A initialize the state-action counts for episode k, vk(s, a) := 0.

Further, set the state-action counts prior to episode k,

Nk (s, a) := # {τ < tk : sτ = s, aτ = a} .

3. For s, s′ ∈ S and a ∈ A set the observed accumulated rewards and the transition
counts prior to episode k,

Rk (s, a) :=
tk−1∑
τ=1

rτ1sτ=s,aτ=a,

Pk (s, a, s′) := # {τ < tk : sτ = s, aτ = a, sτ+1 = s′} ,

and compute estimates r̂k (s, a) := Rk(s,a)
max{1,Nk(s,a)} , p̂k (s′|s, a) := Pk(s,a,s′)

max{1,Nk(s,a)} .
Compute policy π̃k:

4. Let Mk be the set of all MDPs with states and actions as in M , and with tran-
sition probabilities p̃ (·|s, a) close to p̂k (·|s, a), and rewards r̃(s, a) ∈ [0, 1] close
to r̂k (s, a), that is,∣∣r̃(s, a)− r̂k

(
s, a
) ∣∣ ≤

√
7 log(2SAtk/δ)

2 max{1,Nk(s,a)} and (1)∥∥∥p̃ (·|s, a)− p̂k

(
·|s, a

) ∥∥∥
1

≤
√

14S log(2Atk/δ)
max{1,Nk(s,a)} . (2)

5. Use extended value iteration (Section 3.1) to find a policy π̃k and an optimistic
MDP M̃k ∈Mk such that

ρ̃k := min
s

ρ(M̃k, π̃k, s) ≥ max
M ′∈Mk,π,s′

ρ(M ′, π, s′)− 1√
tk

. (3)

Execute policy π̃k:
6. While vk(st, π̃k(st)) < max{1, Nk(st, π̃k(st))} do

(a) Choose action at := π̃k(st), obtain reward rt, and observe next state st+1.
(b) Update vk(st, at) := vk(st, at) + 1.
(c) Set t := t + 1.

Figure 1: The UCRL2 algorithm.

3 The UCRL2 Algorithm

Our algorithm is a variant of the UCRL algorithm in [5]. As its predecessor, UCRL2 implements
the paradigm of “optimism in the face of uncertainty”. As such, it defines a set M of statistically
plausible MDPs given the observations so far, and chooses an optimistic MDP M̃ (with respect to
the achievable average reward) among these plausible MDPs. Then it executes a policy π̃ which is
(nearly) optimal for the optimistic MDP M̃ .

More precisely, UCRL2 (Figure 1) proceeds in episodes and computes a new policy π̃k only at the
beginning of each episode k. The lengths of the episodes are not fixed a priori, but depend on
the observations made. In Steps 2–3, UCRL2 computes estimates p̂k (s′|s, a) and r̂k (s, a) for the
transition probabilities and mean rewards from the observations made before episode k. In Step 4,
a set Mk of plausible MDPs is defined in terms of confidence regions around the estimated mean
rewards r̂k(s, a) and transition probabilities p̂k (s′|s, a). This guarantees that with high probability



the true MDP M is in Mk. In Step 5, extended value iteration (see below) is used to choose a near-
optimal policy π̃k on an optimistic MDP M̃k ∈Mk. This policy π̃k is executed throughout episode
k (Step 6). Episode k ends when a state s is visited in which the action a = π̃k(s) induced by the
current policy has been chosen in episode k equally often as before episode k. Thus, the total number
of occurrences of any state-action pair is at most doubled during an episode. The counts vk(s, a)
keep track of these occurrences in episode k.4

3.1 Extended Value Iteration

In Step 5 of the UCRL2 algorithm we need to find a near-optimal policy π̃k for an optimistic MDP.
While value iteration typically calculates a policy for a fixed MDP, we also need to select an op-
timistic MDP M̃k which gives almost maximal reward among all plausible MDPs. This can be
achieved by extending value iteration to search also among the plausible MDPs. Formally, this can
be seen as undiscounted value iteration [4] on an MDP with extended action set. We denote the state
values of the i-th iteration by ui(s) and the normalized state values by u′i(s) and get for all s ∈ S:

u0(s) = 0,

ui+1(s) = max
a∈A

{
r̃k (s, a) + max

p(·)∈P(s,a)

{∑
s′∈S

p(s′) · ui(s′)
}}

, (4)

Here r̃k (s, a) are the maximal rewards satisfying condition (1) in algorithm UCRL2, and P(s, a) is
the set of transition probabilities p̃

(
·|s, a

)
satisfying condition (2).

While (4) may look like a step of value iteration with an infinite action space, maxp p ·ui is actually
a linear optimization problem over the convex polytope P(s, a). This implies that only the finite
number of vertices of the polytope need to be considered as extended actions, which guarantees
convergence of the value iteration.5

The value iteration is stopped when

max
s∈S

{
ui+1(s)− ui(s)

}
−min

s∈S

{
ui+1(s)− ui(s)

}
<

1√
tk

, (5)

which means that the change of the state values is almost uniform and actually close to the average
reward of the optimal policy. It can be shown that the actions, rewards, and transition probabilities
chosen in (4) for this i-th iteration define an optimistic MDP M̃k and a policy π̃k which satisfy
condition (3) of algorithm UCRL2.

4 Analysis of UCRL2 and Proof Sketch of Theorem 2

In the following we present an outline of the main steps of the proof of Theorem 2. Details and the
complete proofs can be found in the full version of the paper [13]. We also make the assumption
that the rewards r(s, a) are deterministic and known to the learner.6 This simplifies the exposition.
Considering unknown stochastic rewards adds little to the proof and only lower order terms to the
regret bounds. We also assume that the true MDP M satisfies the confidence bounds in Step 4 of
algorithm UCRL2 such that M ∈Mk. This can be shown to hold with sufficiently high probability
(using a union bound over all T ).

We start by considering the regret in a single episode k. Since the optimistic average reward ρ̃k

of the optimistically chosen policy π̃k is essentially larger than the true optimal average reward ρ∗,
it is sufficient to calculate by how much the optimistic average reward ρ̃k overestimates the actual
rewards of policy π̃k. By the choice of π̃k and M̃k in Step 5 of UCRL2, ρ̃k ≥ ρ∗− 1/

√
tk. Thus the

4Since the policy π̃k is fixed for episode k, vk(s, a) 6= 0 only for a = π̃k(s). Nevertheless, we find it
convenient to use a notation which explicitly includes the action a in vk(s, a).

5Because of the special structure of the polytope P(s, a), the linear program in (4) can be solved very effi-
ciently in O(S) steps after sorting the state values ui(s

′). For the formal convergence proof also the periodicity
of optimal policies in the extended MDP needs to be considered.

6In this case all plausible MDPs considered in Steps 4 and 5 of algorithm UCRL2 would give these rewards.



regret ∆k during episode k is bounded as

∆k :=
tk+1−1∑

t=tk

(ρ∗ − rt) ≤
tk+1−1∑

t=tk

(ρ̃k − rt) +
tk+1 − tk√

tk
.

The sum over k of the second term on the right hand side is O(
√

T ) and will not be considered
further in this proof sketch. The first term on the right hand side can be rewritten using the known
deterministic rewards r(s, a) and the occurrences of state action pairs (s, a) in episode k,

∆k .
tk+1−1∑

t=tk

(ρ̃k − rt) =
∑
(s,a)

vk(s, a)
(
ρ̃k − r(s, a)

)
. (6)

4.1 Extended Value Iteration revisited

To proceed, we reconsider the extended value iteration in Section 3.1. As an important observation
for our analysis, we find that for any iteration i the range of the state values is bounded by the
diameter of the MDP M ,

max
s

ui(s)−min
s

ui(s) ≤ D. (7)

To see this, observe that ui(s) is the total expected reward after i steps of an optimal non-stationary
i-step policy starting in state s, on the MDP with extended action set as considered for the extended
value iteration. The diameter of this extended MDP is at most D as it contains the actions of the true
MDP M . If there were states with ui(s1) − ui(s0) > D, then an improved value for ui(s0) could
be achieved by the following policy: First follow a policy which moves from s0 to s1 most quickly,
which takes at most D steps on average. Then follow the optimal i-step policy for s1. Since only D
of the i rewards of the policy for s1 are missed, this policy gives ui(s0) ≥ ui(s1)−D, proving (7).

For the convergence criterion (5) it can be shown that at the corresponding iteration

|ui+1(s)− ui(s)− ρ̃k| ≤
1√
tk

for all s ∈ S, where ρ̃k is the average reward of the policy π̃k chosen in this iteration on the
optimistic MDP M̃k.7 Expanding ui+1(s) according to (4), we get

ui+1(s) = r(s, π̃k(s)) +
∑
s′

p̃k (s′|s, π̃k(s)) · ui(s′)

and hence ∣∣∣∣∣
(

ρ̃k − r(s, π̃k(s))

)
−

(∑
s′

p̃k (s′|s, π̃k(s)) · ui(s′)− ui(s)

) ∣∣∣∣∣ ≤ 1√
tk

.

Defining rk :=
(
rk

(
s, π̃k(s)

))
s

as the (column) vector of rewards for policy π̃k, P̃ k :=(
p̃k (s′|s, π̃k(s))

)
s,s′ as the transition matrix of π̃k on M̃k, and vk :=

(
vk

(
s, π̃k(s)

))
s

as the (row)
vector of visit counts for each state and the corresponding action chosen by π̃k, we can rewrite (6)
as

∆k .
∑
(s,a)

vk(s, a)
(
ρ̃k − r(s, a)

)
≤ vk

(
P̃ k − I

)
ui +

∑
(s,a)

vk(s, a)√
tk

, (8)

recalling that vk(s, a) = 0 for a 6= π̃k(s). Since the rows of P̃ k sum to 1, we can replace ui by wk

with wk(s) = ui(s) −mins ui(s) (we again use the subscript k to reference the episode). The last
term on the right hand side of (8) is of lower order, and by (7) we have

∆k . vk

(
P̃ k − I

)
wk, (9)

‖wk‖∞ ≤ D. (10)

7This is quite intuitive. We expect to receive average reward ρ̃k per step, such that the difference of the state
values after i + 1 and i steps should be about ρ̃k.



4.2 Completing the Proof

Replacing the transition matrix P̃ k of the policy π̃k in the optimistic MDP M̃k by the transition
matrix P k of π̃k in the true MDP M , we get

∆k . vk

(
P̃ k − I

)
wk = vk

(
P̃ k − P k + P k − I

)
wk

= vk

(
P̃ k − P k

)
wk + vk

(
P k − I

)
wk. (11)

The intuition about the second term in (11) is that the counts of the state visits vk are relatively close
to the stationary distribution of the transition matrix P k, such that vk

(
P k−I

)
should be small. The

formal proof requires the definition of a suitable martingale and the use of concentration inequalities
for this martingale. This yields∑

k

vk

(
P k − I

)
wk = O

(
D

√
T log

T

δ

)
with high probability, which gives a lower order term in our regret bound. Thus, our regret bound is
mainly determined by the first term in (11). Since M̃k and M are in the set of plausible MDPs Mk,
this term can be bounded using condition (2) in algorithm UCRL2:

∆k . vk

(
P̃ k − P k

)
wk =

∑
s

∑
s′

vk

(
s, π̃k(s)

)
·
(
P̃ k(s, s′)− P k(s, s′)

)
· wk(s′)

≤
∑

s

vk

(
s, π̃k(s)

)
·
∥∥∥P̃ k(s, ·)− P k(s, ·)

∥∥∥
1
· ‖wk‖∞

≤
∑

s

vk

(
s, π̃k(s)

)
· 2
√

14S log(2AT/δ)
max{1,Nk(s,π̃k(s))} ·D . (12)

Let N(s, a) :=
∑

k vk(s, a) such that
∑

(s,a) N(s, a) = T and recall that Nk(s, a) =∑
i<k vi(s, a). By the condition of the while-loop in Step 6 of algorithm UCRL2, we have that

vk(s, a) ≤ Nk(s, a). Summing (12) over all episodes k we get∑
k

∆k ≤ const ·
∑

k

∑
(s,a)

vk(s, a) ·
√

S log(AT/δ)
max{1,Nk(s,a)} ·D

= const ·D ·
√

S log(AT/δ) ·
∑
(s,a)

∑
k

vk(s,a)√
max{1,Nk(s,a)}

≤ const ·D ·
√

S log(AT/δ) ·
∑
(s,a)

√
N(s, a) (13)

≤ const ·D ·
√

S log(AT/δ) ·
√

SAT . (14)

Here we used for (13) that
n∑

k=1

xk√
Xk−1

≤
(√

2 + 1
)√

Xn ,

where Xk = max
{

1,
∑k

i=1 xi

}
and 0 ≤ xk ≤ Xk−1, and we used Jensen’s inequality for (14).

Noting that Theorem 2 holds trivially true for T ≤ A gives the bound of the theorem.

5 The Lower Bound (Proof Sketch for Theorem 5)

We first consider an MDP with two states s0 and s1, and A′ = b(A − 1)/2c actions. For each
action a, let r(s0, a) = 0, r(s1, a) = 1, and p (s0|s1, a) = δ where δ = 10/D. For all but a single
“good” action a∗ let p (s1|s0, a) = δ, while p (s1|s0, a

∗) = δ +ε for some 0 < ε < δ. The diameter
of this MDP is 1/δ. The average reward of a policy which chooses action a∗ in state s0 is δ+ε

2δ+ε > 1
2 ,

while the average reward of any other policy is 1
2 . Thus the regret suffered by a suboptimal action

in state s0 is Ω(ε/δ). The main observation for the proof of the lower bound is that any algorithm



needs to probe Ω(A′) actions in state s0 for Ω
(
δ/ε2

)
times on average, to detect the “good” action a∗

reliably.

Considering k := bS/2c copies of this MDP where only one of the copies has such a “good”
action a∗, we find that Ω(kA′) actions in the s0-states of the copies need to be probed for Ω

(
δ/ε2

)
times to detect the “good” action. Setting ε =

√
δkA′/T , suboptimal actions need to be taken

Ω
(
kA′δ/ε2

)
= Ω(T ) times which gives Ω(Tε/δ) = Ω(

√
TDSA) regret.

Finally, we need to connect the k copies into a single MDP. This can be done by introducing A′ + 1
additional deterministic actions per state, which do not leave the s1-states but connect the s0-states
of the k copies by inducing an A′-ary tree structure on the s0-states (1 action for going toward the
root, A′ actions to go toward the leaves). The diameter of the resulting MDP is at most 2(D/10 +
dlogA′ ke) which is twice the time to travel to or from the root for any state in the MDP. Thus we
have constructed an MDP with ≤ S states, ≤ A actions, and diameter ≤ D which forces regret
Ω(
√

DSAT ) on any algorithm. This proves the theorem.
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