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Abstract

Given a collection ofr ≥ 2 linear regression problems inp dimensions, suppose that the
regression coefficients share partially common supports. This set-up suggests the use of
`1/`∞-regularized regression for joint estimation of thep × r matrix of regression coeffi-
cients. We analyze the high-dimensional scaling of`1/`∞-regularized quadratic program-
ming, considering both consistency rates in`∞-norm, and also how the minimal sample size
n required for performing variable selection grows as a function of the model dimension,
sparsity, and overlap between the supports. We begin by establishing bounds on the`∞-
error as well sufficient conditions for exact variable selection for fixed design matrices, as
well as designs drawn randomly from general Gaussian matrices. These results show that the
high-dimensional scaling of̀1/`∞-regularization is qualitatively similar to that of ordinary
`1-regularization. Our second set of results applies to design matrices drawn from standard
Gaussian ensembles, for which we provide a sharp set of necessary and sufficient conditions:
the`1/`∞-regularized method undergoes a phase transition characterized by the rescaled sam-
ple sizeθ1,∞(n, p, s, α) = n/{(4− 3α)s log(p− (2−α) s)}. More precisely, for anyδ > 0,
the probability of successfully recovering both supports converges to1 for scalings such that
θ1,∞ ≥ 1 + δ, and converges to0 for scalings for whichθ1,∞ ≤ 1− δ. An implication of this
threshold is that use of`1,∞-regularization yields improved statistical efficiency if the overlap
parameter is large enough (α >2/3), but performs worse than a naive Lasso-based approach
for moderate to small overlap (α <2/3). We illustrate the close agreement between these
theoretical predictions, and the actual behavior in simulations.

1 Introduction

The area of high-dimensional statistical inference is concerned with the behavior of models and algorithms in
which the dimensionp is comparable to, or possibly even larger than the sample sizen. In the absence of addi-
tional structure, it is well-known that many standard procedures—among them linear regression and principal
component analysis—are not consistent unless the ratiop/n converges to zero. Since this scaling precludes hav-
ing p comparable to or larger thann, an active line of research is based on imposing structural conditions on the
data—for instance, sparsity, manifold constraints, or graphical model structure—and then studying conditions
under which various polynomial-time methods are either consistent, or conversely inconsistent.
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This paper deals with high-dimensional scaling in the context of solving multiple regression problems, where
the regression vectors are assumed to have shared sparse structure. More specifically, suppose that we are
given a collection ofr different linear regression models inp dimensions, with regression vectorsβ i ∈ R

p, for
i = 1, . . . , r. We letS(β i) = {j | β i

j 6= 0} denote the support set ofβ i. In many applications—among them
sparse approximation, graphical model selection, and image reconstruction—it is natural to impose a sparsity
constraint, corresponding to restricting the cardinality|S(β i)| of each support set. Moreover, one might expect
some amount of overlap between the setsS(β i) and S(β j) for indicesi 6= j since they correspond to the
sets of active regression coefficients in each problem. For instance, consider the problem of image denoising
or reconstruction, using wavelets or some other type of multiresolution basis. It is well known that natural
images tend to have sparse representations in such bases. Moreover, similar images—say the same scene taken
from multiple cameras—would be expected to share a similar subset of active features in the reconstruction.
Similarly, in analyzing the genetic underpinnings of a given disease, one might have results from different
subjects and/or experiments, meaning that the covariate realizations and regression vectors would differ in their
numerical values, but one expects the same subsets of genes to be active in controlling the disease, which
translates to a condition of shared support in the regression coefficients. Given these structural conditions of
shared sparsity in these and other applications, it is reasonable to consider how this common structure can be
exploited so as to increase the statistical efficiency of estimation procedures.

In this paper, we study the high-dimensional scaling of block`1/`∞ regularization. Our main contribution is
to obtain some precise—and arguably surprising—insights into the benefits and dangers of using block`1/`∞
regularization, as compared to simpler`1-regularization (separate Lasso for each regression problem). We
begin by providing a general set of sufficient conditions for consistent support recovery for both fixed design
matrices, and random Gaussian design matrices. In addition to these basic consistency results, we then seek to
characterize rates, for the particular case of standard Gaussian designs, in a manner precise enough to address
the following questions.

(a) First, under what structural assumptions on the data does the use of`1/`∞ block-regularization provide
a quantifiable reduction in the scaling of the sample sizen, as a function of the problem dimensionp
and other structural parameters, required for consistency?

(b) Second, are there any settings in which`1/`∞ block-regularization can be harmful relative to compu-
tationally less expensive procedures?

Answers to these questions yield useful insight into thetradeoff between computational and statistical effi-
ciency. Indeed, the convex programs that arise from using block-regularization typically require a greater
computational cost to solve. Accordingly, it is important to understand under what conditions this increased
computational cost guarantees that fewer samples are required for achieving a fixed level of statistical accuracy.

As a representative instance of our theory, consider the special case of standard Gaussian design matrices and
two regression problems (r= 2), with the supportsS(β 1) and S(β 2) each of sizes and overlapping in a
fraction α ∈ [0, 1] of their entries. For this problem, we prove that block`1/`∞ regularization undergoes a
phase transition in terms of the rescaled sample size

θ1,∞(n, p, s, α) :=
n

(4 − 3α)s log(p − (2 − α)s)
. (1)

In words, for anyδ > 0 and for scalings of the quadruple(n, p, s, α) such thatθ1,∞ ≥ 1 + δ, the probability of
successfully recovering bothS(β 1) andS(β 2) converges to one, whereas for scalings such thatθ1,∞ ≤ 1 − δ,
the probability of success converges to zero. By comparison to previous theory on the behavior of the Lasso
(ordinary`1-regularized quadratic programming), the scaling (1) has two interesting implications. For thes-
sparse regression problem with standard Gaussian designs, the Lasso has been shown [10] to undergo a phase
transition as a function of the rescaled sample size

θLas(n, p, s) :=
n

2s log(p − s)
, (2)

so that solving two separate Lasso problems, one for each regression problem, would recover both supports for
problem sequences(n, p, s) such thatθLas > 1. Thus, one consequence of our analysis is to provide a precise
confirmation of the natural intuition: if the data is well-aligned with the regularizer, then block-regularization
increases statistical efficiency. On the other hand, our analysis also conveys a cautionary message: if the overlap
is too small—more precisely, ifα < 2/3—then block̀ 1,∞ is actuallyharmfulrelative to the naive Lasso-based
approach. This fact illustrates that some care is required in the application of block regularization schemes.
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The remainder of this paper is organized as follows. In Section 2, we provide a precise description of the
problem. Section 3 is devoted to the statement of our main result, some discussion of its consequences, and
illustration by comparison to empirical simulations.

2 Problem set-up

We begin by setting up the problem to be studied in this paper, including multivariate regression and family of
block-regularized programs for estimating sparse vectors.

2.1 Multivariate regression

In this problem, we consider the following form of multivariate regression. For eachi = 1, . . . , r, let βi ∈ R
p

be a regression vector, and consider the family of linear observation models

yi = Xiβi + wi, i = 1, 2, . . . , r. (3)

Here eachXi ∈ R
n×p is a design matrix, possibly different for each vectorβi, andwi ∈ R

n is a noise vector.
We assume that the noise vectorswi andwj are independent for different regression problemsi 6= j. In this
paper, we assume that eachwi has a multivariate GaussianN(0, σ2In×n) distribution. However, we note that
qualitatively similar results will hold for any noise distribution with sub-Gaussian tails (see the book [1] for
more background).

2.2 Block-regularization schemes

For compactness in notation, we frequently useB to denote thep × r matrix with β i ∈ R
p as theith column.

Given a parameterq ∈ [1,∞], we define thè1/`q block-norm as follows:

‖B‖`1/`q
: =

p∑

k=1

‖(β1
k, β2

k, . . . , βr
k)‖q, (4)

corresponding to applying thèq norm to each row ofB, and thè 1-norm across all of these blocks. We note
that all of these block norms are special cases of the CAP family of penalties [12].

This family of block-regularizers (4) suggests a natural family ofM -estimators for estimatingB, based on
solving the block-1̀/`q-regularized quadratic program

B̂ ∈ arg min
B∈Rp×r

{ 1

2n

r∑

i=1

‖yi − Xiβi‖2
2 + λn‖B‖`1/`q

}
, (5)

whereλn > 0 is a user-defined regularization parameter. Note that the data term is separable across the different
regression problemsi = 1, . . . , r, due to our assumption of independence on the noise vectors. Any coupling
between the different regression problems is induced by the block-norm regularization.

In the special case of univariate regression (r= 1), the parameterq plays no role, and the block-regularized
scheme (6) reduces to the Lasso [7, 3]. Ifq = 1 andr ≥ 2, the block-regularization function (like the data
term) is separable across the different regression problemsi = 1, . . . , r, and so the scheme (6) reduces to
solvingr separate Lasso problems. Forr ≥ 2 andq = 2, the program (6) is frequently referred to as the group
Lasso [11, 6]. Another important case [9, 8], and the focus of this paper, is block`1/`∞ regularization.

The motivation for using block̀1/`∞ regularization is to encourageshared sparsityamong the columns of the
regression matrixB. Geometrically, like thè1 norm that underlies the ordinary Lasso, the`1/`∞ block norm
has a polyhedral unit ball. However, the block norm captures potential interactions between the columnsβi

in the matrixB. Intuitively, taking the maximum encourages the elements(β1
k, β2

k . . . , βr
k) in any given row

k = 1, . . . , p to be zero simultaneously, or to both be non-zero simultaneously. Indeed, ifβi
k 6= 0 for at least

onei ∈ {1, . . . , r}, then there is no additional penalty to haveβj
k 6= 0 as well, as long as|βj

k| ≤ |βi
k|.

2.3 Estimation in `∞ norm and support recovery

For a givenλn > 0, suppose that we solve the block`1/`∞ program, thereby obtaining an estimate

B̂ ∈ arg min
B∈Rp×r

{ 1

2n

r∑

i=1

‖yi − Xiβi‖2
2 + λn‖B‖`1/`∞

}
, (6)
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We note that under high-dimensional scaling (p� n), this convex program (6) is not necessarily strictly
convex, since the quadratic term is rank deficient and the block`1/`∞ norm is polyhedral, which implies that
the program is not strictly convex. However, a consequence of our analysis is that under appropriate conditions,
the optimal solution̂B is in fact unique.

In this paper, we study the accuracy of the estimateB̂, as a function of the sample sizen, regression dimensions
p andr, and the sparsity indexs = maxi=1,...,r |S(β i)|. There are various metrics with which to assess the
“closeness” of the estimatêB to the truthB, including predictive risk, various types of norm-based bounds on
the differenceB̂ − B, and variable selection consistency. In this paper, we prove results bounding the`∞/`∞
difference

‖B̂ − B‖`∞/`∞ : = max
k=1,...,p

max
i=1,...,r

|B̂i
k − Bi

k|.

In addition, we prove results on support recovery criteria. Recall that for each vectorβ i ∈ R
p, we useS(β i) =

{k | β i
k 6= 0} to denote its support set. The problem ofunion support recoverycorresponds to recovering the

set

J : =

r⋃

i=1

S(β i), (7)

corresponding to the subsetJ ⊆ {1, . . . , p} of indices that are active in at least one regression problem. Note
that the cardinality of|J | is upper bounded byrs, but can be substantially smaller (as small ass) if there is
overlap among the different supports.

In some results, we also study the more refined criterion of recovering theindividual signed supports, meaning
the signed quantitiessign(β i

k), where the sign function is given by

sign(t) =






+1 if t > 0

0 if t = 0

−1 if t < 0

(8)

There are multiple ways in which the support (or signed support) can be estimated, depending on whether we
use primal or dual information from an optimal solution.

`1/`∞ primal recovery: Solve the block-regularized program (6), thereby obtaining a (primal) optimal solu-
tion B̂ ∈ R

p×r, and estimate the signed support vectors

[Spri(β̂
i)]k = sign(β̂ i

k). (9)

`1/`∞ dual recovery: Solve the block-regularized program (6), thereby obtaining an primal solutionB̂ ∈
R

p×r. For each rowk = 1, . . . , p, compute the setMk : = arg max
i=1,...,r

|β̂ i
k |. Estimate the signed support via:

[Sdua(β̂
i
k)] =

{
sign(β̂ i

k) if i ∈ Mk

0 otherwise.
(10)

As our development will clarify, this procedure corresponds to estimating the signed support on the basis of a
dual optimal solution associated with the optimal primal solution.

2.4 Notational conventions

Throughout this paper, we use the indexp ∈ {1, . . . , r} as a superscript in indexing the different regression
problems, or equivalently the columns of the matrixB ∈ R

p×r. Given a design matrixX ∈ R
n×p and a subset

S ⊆ {1, . . . , p}, we useXS to denote then × |S| sub-matrix obtained by extracting those columns indexed by
S. For a pair of matricesA ∈ R

m×` andB ∈ R
m×n, we use the notation

〈
A, B

〉
: = AT B for the resulting

` × n matrix.

We use the following standard asymptotic notation: for functionsf, g, the notationf(n) = O(g(n)) means that
there exists a fixed constant0 < C < +∞ such thatf(n) ≤ Cg(n); the notationf(n) = Ω(g(n)) means that
f(n) ≥ Cg(n), andf(n) = Θ(g(n)) means thatf(n) = O(g(n)) andf(n) = Ω(g(n)).
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3 Main results and their consequences

In this section, we provide precise statements of the main results of this paper. Our first main result (Theorem 1)
provides sufficient conditions for deterministic design matricesX1, . . . , Xr. This result allows for an arbitrary
numberr of regression problems. Not surprisingly, these results show that the high-dimensional scaling of block
`1/`∞ is qualitiatively similarto that of ordinarỳ 1-regularization: for instance, in the case of random Gaussian
designs and boundedr, our sufficient conditions in [5] ensure thatn = Ω(s log p) samples are sufficient to
recover the union of supports correctly with high probability, which matches known results on the Lasso [10].

As discussed in the introduction, we are also interested in the more refined question: can we provide nec-
essary and sufficient conditions that are sharp enough to revealquantitative differencesbetween ordinarỳ1-
regularization and block regularization? In order to provide precise answers to this question, our final two results
concern the special case ofr = 2 regression problems, both with supports of sizes that overlap in a fractionα
of their entries, and with design matrices drawn randomly from the standard Gaussian ensemble. In this setting,
our final two results (Theorem 2 and 3) show that block`1/`∞ regularization undergoes aphase transition
specified by the rescaled sample size. We then discuss some consequences of these results, and illustrate their
sharpness with some simulation results.

3.1 Sufficient conditions for deterministic designs

In addition to the sample sizen, problem dimensionsp andr, and sparsity indexs, our results are stated in
terms of the minimum eigenvalueCmin of the|J | × |J | matrices1

n 〈Xi
J , Xi

J〉—that is,

λmin

( 1

n
〈Xi

J , Xi
J 〉

)
≥ Cmin for all i = 1, . . . , r, (11)

as well as aǹ∞-operator norm of their inverses:

|||
( 1

n
〈Xi

J , Xi
J〉

)−1|||∞ ≤ Dmax for all i = 1, . . . , r. (12)

It is natural to think of these quantites as being constants (independent ofp ands), although our results do allow
them to scale.

We assume that the columns of each design matrixXi, i = 1, . . . , r are normalized so that

‖Xi
k‖2

2 ≤ 2n for all k = 1, 2, . . . p. (13)

The choice of the factor2 in this bound is for later technical convenience. We also require the following
incoherence conditionon the design matrix is satisified: there exists someγ ∈ (0, 1] such that

max
`=1,...,|Jc|

r∑

i=1

‖
〈
Xi

`, Xi
J (〈Xi

J , Xi
J 〉)−1

〉
‖1 ≤ (1 − γ), (14)

and we also define thesupport minimum valueBmin = mink∈J maxi=1,...,r |β i
k |,

For a parameterξ > 1 (to be chosen by the user), we define the probability

φ1(ξ, p, s) := 1 − 2 exp(−(ξ − 1)[r + log p]) − 2 exp(−(ξ2 − 1) log(rs)) (15)

which specifies the precise rate with which the “high probability” statements in Theorem 1 hold.

Theorem 1. Consider the observation model(3) with design matricesXi satisfying the column bound(13)and
incoherence condition(14). Suppose that we solve the block-regularized`1/`∞ convex program(6) with regu-

larization parameterρ2
n ≥ 4ξσ2

γ2

r2+r log(p)
n for someξ > 1. Then with probability greater thanφ1(ξ, p, s) → 1,

we are guaranteed that:

(a) The block-regularized program has a unique solutionB̂ such that
⋃r

i=1 S(β̂ i) ⊆ J , and it satisfies the
elementwise bound

max
i=1,...,r

max
k=1,...,p

|β̂ i
k − β i

k | ≤ ξ

√
4σ2

Cmin

log(rs)

n
+ Dmax ρn

︸ ︷︷ ︸
. (16)

b1(ξ, ρn, n, s)

5



(b) If in additionBmin ≥ b1(ξ, ρn, n, s), then
⋃r

i=1 S(β̂ i) = J , so that the solution̂B correctly specifies
the union of supportsJ .

Remarks: To clarify the scope of the claims, part (a) guarantees that the estimator recovers the union support
J correctly, whereas part (b) guarantees that for any giveni = 1, . . . , r andk ∈ S(β i), the signsign(β̂ i

k) is
correct. Note that we are guaranteed thatβ̂ i

k = 0 for all k /∈ J . However,within the union supportJ , when
using primal recovery method, it is possible to have false non-zeros—i.e., there may be an indexk ∈ J\S(β i)

such thatβ̂ i
k 6= 0. Of course, this cannot occur if the support setsS(β i) are all equal. This phenomenon is

related to geometric properties of the block`1/`∞ norm: in particular, for any given indexk, whenβ̂ j
k 6= 0 for

somej ∈ {1, . . . , r}, then there is no further penalty to havingβ̂ i
k 6= 0 for other column indicesi 6= j.

The dual signed support recovery method (10) is more conservative in estimating the individual support sets.
In particular, for any giveni ∈ {1, . . . , r}, it only allows an indexk to enter the signed support estimate
Sdua(β̂

i) when|β̂ i
k | achieves the maximum magnitude (possibly non-unique) across all indicesi = 1, . . . , r.

Consequently, Theorem 1 guarantees that the dual signed support method will never include an index in the
individual supports. However, it may incorrectly exclude indices of some supports, but like the primal support
estimator, it is always guaranteed to correctly recover the union of supportsJ .

We note that it is possible to ensure that under some conditions that the dual support method will correctly
recover each of the individual signed supports, without any incorrect exclusions. However, as illustrated by
Theorem 2, doing so requires additional assumptions on the size of the gap|β i

k | − |β j
k | for indicesk ∈ B : =

S(β i) ∩ S(β j).

3.2 Sharp results for standard Gaussian ensembles

Our results thus far show under standard mutual incoherence or irrepresentability conditions, the block`1/`∞
method produces consistent estimators forn = Ω(s log(p−s)). In qualitative terms, these results match known
scaling for the Lasso, or ordinarỳ1-regularization. In order to provide keener insight into the (dis)advantages
associated with using̀1/`∞ block regularization, we specialize the remainder of our analysis to the case of
r = 2 regression problems, where the corresponding design matricesXi, i = 1, 2 are sampled from the standard
Gaussian ensemble [2, 4]—i.e., with i.i.d. rowsN(0, Ip×p). Our goal in studying this special case is to be able
to makequantiative comparisonswith the Lasso.

We consider a sequence of models indexed by the triplet(p, s, α), corresponding to the problem dimension
p, support sizess. and overlap parameterα ∈ [0, 1]. We assume thats ≤ p/2, capturing the intuition of a
(relatively) sparse model. Suppose that for a given model, we taken = n(p, s, α) observations. according to
equation (3). We can then study the probability of successful recovery as a function of the model triplet, and
the sample sizen.

In order to state our main result, we define the order parameter or rescaled sample sizeθ1,∞(n, p, s, α) :=
n

(4−3α)s log(p−(2−α)s) . We also define thesupport gap valueas well asc∞-gap Bgap =
∣∣|β 1

B | − |β 2
B |

∣∣, and

c∞ = 1
ρn

‖T (Bgap)‖∞, whereT (Bgap) = ρn ∧ Bgap.

3.2.1 Sufficient conditions

We begin with a result that provides sufficient conditions for support recovery using block`1/`∞ regularization.
Theorem 2(Achievability). Given the observation model(3) with random designX drawn with i.i.d. standard
Gaussian entries, and consider problem sequences(n, p, s, α) for which θ1,∞(n, p, s, α) > 1 + δ for some

δ > 0. If we solve the block-regularized program(6) with ρn = ξ
√

log p
n and c∞ → 0 , then with probability

greater than1 − c1 exp(−c2 log(p − (2 − α)s)), the following properties hold:

(i) The block`1,∞-program(6) has a unique solution(β̂ 1, β̂ 2), with supportsS(β̂ 1) ⊆ J andS(β̂ 2) ⊆
J . Moreover, we have the elementwise bound

max
i=1,2

max
k=1,...,p

|β̂ i
k − β i

k | ≤ ξ

√
100 log(s)

n
+ ρn

[ 4s√
n

+ 1
]
,

︸ ︷︷ ︸
(17)

b3(ξ, ρn, n, s)
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(ii) If the support minimumBmin > 2b3(ξ, ρn, n, s), then the primal support method successfully recovers
the support unionJ = S(β 1)∪S(β 2). Moreover, using the primal signed support recovery method(9),
we have

[Spri(β̂
i)]k = sign(β i

k) for all k ∈ S(β i). (18)

3.2.2 Necessary conditions

We now turn to the question of finding matching necessary conditions for support recovery.
Theorem 3(Lower bounds).Given the observation model(3) with random designX drawn with i.i.d. standard
Gaussian entries.

(a) For problem sequences(n, p, s, α) such thatθ1,∞(n, p, s, α) < 1 − δ for someδ > 0 and for any
non-increasing regularization sequenceρn > 0, no solutionB̂ = (β̂ 1, β̂ 2) to the block-regularized
program(6) has the correct support unionS(β̂ 1) ∪ S(β̂ 2).

(b) Recalling the definition of Bgap, define the rescaled gap limitc2(ρn, Bgap) :=

lim sup(n,p,s)
‖T (Bgap)‖2

ρn

√
s

. If the sample sizen is bounded as

n < (1 − δ)
[
(4 − 3α) + (c2(ρn, Bgap))2

]
s log[p − (2 − α)s]

for someδ > 0, then the dual recovery method(10) fails to recover the individual signed supports.

It is important to note thatc∞ ≥ c2, which implies then that as long asc∞ → 0, thenc2 → 0, so that the
conditions of Theorem 3(a) and (b) are equivalent. However, note that ifc2 does not go to0, then in fact, the
method could fail to recover the correct support even ifθ1,∞ > 1 + δ. This result is key to understanding the
`1,∞-regularization term. The gap between the vectors plays a fundamental role in in reducing the sampling
complexity. Namely, if the gap is too large, then the sampling efficiency is greatly reduced as compared to if
the gap is very small. In summary, while (a) and (b) seem equivalent on the surface, the requirement in (b) is in
fact stronger than that in (a) and demonstrates the importance of condition (iii) in Theorem 2. It shows that if
the gap is too large, then correct joint support recovery is not possible.

3.3 Illustrative simulations and some consequences

In this section, we provide some illustrative simulations that illustrate the phase transitions predicted by The-
orems 2 and 3, and show that the theory provides an accurate description of practice even for relatively small
problem sizes (e.g.,p = 128). Figure 1 plots the probability of successful recovery of the individual signed sup-
ports using dual support recovery (10)—namely,P[Sdua(β̂

i) = S±(β i), Sdua(β̂
2) = S±(β 2)] for i = 1, 2—

versus the order parameterθ1,∞(n, p, s, α). The plot contains four sets of “stacked” curves, each corresponding
to a different choice of the overlap parameter, ranging fromα = 1 (left-most stack), toα = 0.1 (right-most
stack). Each stack contains three curves, corresponding to the problem sizesp ∈ {128, 256, 512}. In all cases,
we fixed the support sizes = 0.1p. The stacking behavior of these curves demonstrates that we have isolated
the correct order parameter, and the step-function behavior is consistent with the theoretical predictions of a
sharp threshold.

Theorems 2 and 3 have some interesting consequences, particularly in comparison to the behavior of the “naive”
Lasso-based individual decoding of signed supports—that is, the method that simply applies the Lasso (ordinary
`1-regularization) to each columni = 1, 2 separately. By known results [10] on the Lasso, the performance of
this naive approach is governed by the order parameter

θLas(n, p, s) =
n

2s log(p − s)
, (19)

meaning that for anyδ > 0, it succeeds for sequences such thatθLas > 1+δ, and conversely fails for sequences
such thatθLas < 1−δ. To compare the two methods, we define the relative efficiency coefficientR(θ1,∞, θLas) :
= θLas(n, p, s)/θ1,∞(n, p, s, α). A value ofR < 1 implies that the block method is more efficient, whileR > 1
implies that the naive method is more efficient.

With this notation, we have the following:
Corollary 1. The relative efficiency of the block̀1,∞ program (6) compared to the Lasso is given by

R(θ1,∞, θLas) = 4−3α
2

log(p−(2−α)s)
log(p−s) . Thus, for sublinear sparsitys/p → 0, the block scheme has greater

statistical efficiency for all overlapsα ∈ (2/3, 1], but lower statistical efficiency for overlapsα ∈ [0, 2/3).
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Figure 1. Probability of success in recovering the joint signed supports plotted against the control parameterθ1,∞ =
n/[2s log(p − (2 − α)s))] for linear sparsitys = 0.1p. Each stack of graphs corresponds to a fixed overlapα, as
labeled on the figure. The three curves within each stack correspond to problem sizesp{128, 256, 512}; note how
they all align with each other and exhibit step-like behavior, consistent with Theorems 2 and 3. The vertical lines
correspond to the thresholdsθ∗

1,∞
(α) predicted by Theorems 2 and 3; note the close agreement between theory and

simulation.

References

[1] V. V. Buldygin and Y. V. Kozachenko.Metric characterization of random variables and random processes.
American Mathematical Society, Providence, RI, 2000.

[2] E. Candes and T. Tao. The Dantzig selector: Statistical estimation whenp is much larger thann. Annals
of Statistics, 2006.

[3] S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.SIAM J. Sci.
Computing, 20(1):33–61, 1998.

[4] D. L. Donoho and J. M. Tanner. Counting faces of randomly-projected polytopes when the projection
radically lowers dimension. Technical report, Stanford University, 2006. Submitted to Journal of the
AMS.

[5] S. Negahban and M. J. Wainwright. Joint support recovery under high-dimensional scaling: Benefits and
perils of`1,∞-regularization. Technical report, Department of Statistics, UC Berkeley, January 2009.

[6] G. Obozinski, B. Taskar, and M. Jordan. Joint covariate selection for grouped classification. Technical
report, Statistics Department, UC Berkeley, 2007.

[7] R. Tibshirani. Regression shrinkage and selection via the lasso.Journal of the Royal Statistical Society,
Series B, 58(1):267–288, 1996.

[8] J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms for simultaneous sparse approximation.Sig-
nal Processing, 86:572–602, April 2006. Special issue on ”Sparse approximations in signal and image
processing”.

[9] B. Turlach, W.N. Venables, and S.J. Wright. Simultaneous variable selection.Technometrics, 27:349–363,
2005.

[10] M. J. Wainwright. Sharp thresholds for high-dimensional and noisy recovery of sparsity using using`1-
constrained quadratic programs. Technical Report 709, Department of Statistics, UC Berkeley, 2006.

[11] Kim Y., Kim J., and Y. Kim. Blockwise sparse regression.Statistica Sinica, 16(2), 2006.

[12] P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute
penalties. Technical report, Statistics Department, UC Berkeley, 2007.

8


