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Appendix

Proof of Lemma 1: By choice ¢ minimizes the collapsed variational free energy, so that by equation
(2) of our paper,
q(Z
9 m
p(Z, Z)

From a result due to [1], [2],[3], the choice of parameters  that minimize the variational free energy
F(Z,q,7) (defined in Section 2 of the paper) are given by

Z ¢i(2),¥j €[ 2)

CVB(Z) = F(&,q) = Eq(g) log

If VB chose variational parameters as ¢ = g and 4 as in (2), then it approximates the posterior
p(Z, 0|Z) by q(Z)q(0) where q(0) is the Dirichlet prior with parameters ¥, and maybe written as
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Here B(7 + @) is the normalization constant. In general, for Dirichlet parameters o/, B(7/) is
(v
B(7) = 1,00 )
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Since VB chooses variational parameters to minimize its free energy, we have by equation (1) of our
paper9
R a(2)q(6)
VB(Z) < F (7, q,7) = Eq(2)4(0) l0g m
Expanding the above expression by the chain rule for computing relative entropy [4],
q(%) q(9)
VB(Z) < E s log Hﬂ—i-EzEglog e
q(%) p(Z.7) (£)*=q(0) p(0]7, 7)
Combining (1) with the above
q(0)
VB — CVB < E z E log TS o (5)
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We will bound the right side of (5). From the conjugacy of the multinomial and Dirichlet distribu-
tions, we know that p(0|Z, ¥) is given by

- =\ 1 mj+ao;—1



where m; = m;(Z) denotes the number of occurrences of topic j in the collection of topics 2. We
denote the collection (my,...,my) by the vector /7. Plugging the above expression for p(6|Z, Z),
and (3) for ¢(0), into the right side of (5),

EyzEq) log p(g(:;’)g) = Ey» [log JM] +Eq(2) 2]: (v; — my) (Eqp) log 6-)
We will show that
Eqcz) | > (7= = m2) (Eq(o) log ez)] -0 ©)
and o :
Eqz) [1og W] = ZJ: (Ey(»[log T(m; + ;)] —log D(v; + a3)) 7
which will imply

q(6
Eq)Eq0) [log p(9|(f)g)] = (Eqez)logT(m; + ;)] — logT(; + o)) ,

j
and complete the proof, by (5).
To see (6), observe that m. = ), 1[z; = z] so that E;»ym. = >, ¢i(2) = 7.. Hence, when we

take expectation under ¢(%), each summand disappears. By linearity of expectation, the entire sum
is zero.

Eq(5)[(v: — m.)Eq) log6.]

= (Eqep)loghs) (Eqz)(v: — m.))
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- 0.

To show (7), we first use (4) to evaluate
B(m + @)

W = Z (logT'(m; + o) — log T'(7y; + «j))
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From the definitions of y; (2), and m;, we have > = > ;M =M so that the last two terms in
the above expression disappear. Taking expectations over ¢(Z) now yields (7). [
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Proof of Lemma 2: Let F(q1, . . ., ¢,) denote the expectation E[f (X +. ..+ X,,)]. Using iterated
expectation we may rewrite

Flgi,....qm) = Y Pr(Xi, Xo)E[f(X1+ ...+ Xpm)| X1, Xo]
X1,X2
= ) Pr(Xy =21, Xy = 2)E[f (X5 + ... + Xp)].

By independence, Pr(X; = 1, X2 = 23) = Pr(X; = 1) Pr(X2 = x2). Also, each random
variable X; takes 0,1 values, and the probabilities are given by Pr(X; = 1) = ¢;, Pr(X; = 0) =
1 — g;. Define random variable Y = X3 + ... + X,,. Using these facts in the previous equation,
Flg, - qm) = (1=q)(1 = @)E[f(Y)]+ qgE[f(2+Y)]
+E[f(1+Y)[(q1(1 — ¢2) + g2(1 — q1))
= (@ +a@) EfA+Y)]-E[f})])
+aq2(E[f (V)] +E[f(2+Y)] = 2E[f(1 + Y))).



Fix gs,...,¢qn. Since the g;’s sum to a fixed value, fixing implies ¢; + g2 is a constant. Note
E[f(V)],E[f(Y + D], E[f(Y + 2)] are constants independent of g1, 2. Maximizing F is now
equivalent to maximizing the second term of the right side of the last equation. By linearity of
expectation, E[f (V)] + E[f2+Y)] - 2E[f(1+Y)]|=E[f(Y)+ f(24+Y) —2f(1 + Y)]. Since
f is convex, the previous term is non-negative. Thus we need to maximize g ¢go under the constraint
that their sum is fixed. The optimum choice is q; = ¢o.

Starting from a choice of ¢y, . . ., ¢, that maximizes F', we may, by our arguments, set the minimum
and maximum of the ¢;’s, say ¢; and g2, to a common value (g1 4 g2)/2, without decreasing F'. This
decreases the potential ®(q1, . - ., Gm) 2 >_i; @i — qj| of the optimal solution by a factor of at least
(1 — -L;). By repeating this process, we can find optimal solutions with arbitrarily small potential.

m2,
Continuity of F' now implies a solution with zero potential is optimal. We end by observing that

zero potential is achieved only by ¢1 = ... = ¢, = L.
O
Proof of Lemma 3: Assume without loss of generality ¢ # 0. Let i = mgq be the mean. Define
A
f(e) ZE [log I(X)|(X — p) € [—ev/m, cv/m]] .
Using the following concentration bound
Pr{|X —p| >r] < 2¢~""/2m (8)
we have )
E[logT'(X +a)] < f(c) +2e~¢ /2 log['(m + a). 9)
Now

o/
fle) =logT'(p+a) + Z {Pr(p—i)logT(p—i+a)+Pr(p+i)logl(n+i+a)}. (10)
i=1

We will first obtain bounds on each summand term. Using I'(z + 1) = 2I'(x), we get

i—1
logT'(p+a+1i) = 10gF(u+a)+Zlog(,u+a+r)
r=0
i—1 ,
= logI'(p+a)+log(p+a)+ log(1 4+ ——).
gT(u + a) +ilog(n );Og( )
From 1 + = < exp(xz), we may upper-bound the last summation by
= i?
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Therefore we get
2
)
logl'(p+a—+1) <logDI'(u+a)+ilog(p+a) + —. 11
gT(p ) <logI'(p + a) g(p+a) it a) (11)
Similarly, we can get
logl'(p4+a —1) =logl'(p+a) —ilo +a)— log(1 — .
g T ) =logT(1+ a) — ilog(p+a) — > log( )

r=1

This time we will use — log(1 — z) < log(1 +2z) < 2a; but this only holds in the range z € [0, 1).
c/m

mq+a’
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Since in our case z < for this to be applicable it suffices if m is at least %. We can now
bound
.2 Z
+ .
pta p+a

logT(p+a—1i) <logT'(u+a) —ilog(u + a) + (12)



Using (11) and (12), we can upper-bound each summand in (10) by
log I'(p + a) {Pr(pu + i) + Pr(p — 1)}

30 +i {Pr(p+1%) +Pr(p—1)}.

+ log(p+a){Pr(p+i)i — Pr(p —d)i} + it a

Summing up the first term over ¢ we get at most log I'(i + @). The second term becomes at most
log(pn + a)mPr(|X — u| > c¢y/m) since the mean is p. Finally, the third term is at most three
times the sum of the variance, (1 — ¢), and a term smaller than the variance, divided by u + a.
Combining, and using the concentration bound in (8) we get

fle) <logT(p+a)+ O —q)+ Lm + 26_62/2mlogm.
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Choosing ¢ = 2+/log m and plugging into (9), we get
EflogI'(X + a)] < logI'(1 + a) + O(1 — q) + o(1)

with o(1) = O(y/ 5™ ). With this choice of ¢, the required lower bound on 1 is 1/¢2+°(1).
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