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Appendix

Proof of Lemma 1: By choice q minimizes the collapsed variational free energy, so that by equation
(2) of our paper,

CVB(~x) = F(~x, q) = Eq(~z) log
q(~z)
p(~z, ~x)

. (1)

From a result due to [1], [2],[3], the choice of parameters ~γ that minimize the variational free energy
F(~x, q,~γ) (defined in Section 2 of the paper) are given by

γj
∆=

∑
i

qi(z),∀j ∈ [k]. (2)

If VB chose variational parameters as φ = q and ~γ as in (2), then it approximates the posterior
p(~z, θ|~x) by q(~z)q(θ) where q(θ) is the Dirichlet prior with parameters ~γ, and maybe written as

q(θ) ∆=
1

B(~γ + ~α)

∏
z

θγz+αz−1
z , (3)

Here B(~γ + ~α) is the normalization constant. In general, for Dirichlet parameters ~ν, B(~ν) is

B(~ν) =

∏
j Γ(νj)

Γ(
∑
j νj)

. (4)

Since VB chooses variational parameters to minimize its free energy, we have by equation (1) of our
paper,

VB(~x) ≤ F(~x, q,~γ) = Eq(~z)q(θ) log
q(~z)q(θ)
p(~z, ~x, θ)

.

Expanding the above expression by the chain rule for computing relative entropy [4],

VB(~x) ≤ Eq(~z) log
q(~z)
p(~z, ~x)

+ Eq(~z)Eq(θ) log
q(θ)

p(θ|~z, ~x)
Combining (1) with the above

VB(~x)− CVB(~x) ≤ Eq(~z)Eq(θ) log
q(θ)

p(θ|~z, ~x)
. (5)

We will bound the right side of (5). From the conjugacy of the multinomial and Dirichlet distribu-
tions, we know that p(θ|~z, ~x) is given by

p(θ|~z, ~x) =
1

B(~m+ ~α)

∏
j

θ
mj+αj−1
j ,
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where mj = mj(~z) denotes the number of occurrences of topic j in the collection of topics ~z. We
denote the collection (m1, . . . ,mk) by the vector ~m. Plugging the above expression for p(θ|~z, ~x),
and (3) for q(θ), into the right side of (5),

Eq(~z)Eq(θ) log
q(θ)

p(θ|~x, ~z)
= Eq(~z)

[
log

B(~m+ ~α)
B(~γ + ~α)

]
+ Eq(~z)

∑
j

(γj −mj)
(
Eq(θ) log θz

) .
We will show that

Eq(~z)

[∑
z

(γz −mz)
(
Eq(θ) log θz

)]
= 0 (6)

and

Eq(~z)
[
log

B(~m+ ~α)
B(~γ + ~α)

]
=
∑
j

(
Eq(~z)[log Γ(mj + αj)]− log Γ(γj + αj)

)
, (7)

which will imply

Eq(~z)Eq(θ)
[
log

q(θ)
p(θ|~x, ~z)

]
=
∑
j

(
Eq(~z)[log Γ(mj + αj)]− log Γ(γj + αj)

)
,

and complete the proof, by (5).

To see (6), observe that mz =
∑
i 1[zi = z] so that Eq(~z)mz =

∑
i qi(z) = γz . Hence, when we

take expectation under q(~z), each summand disappears. By linearity of expectation, the entire sum
is zero.

Eq(~z)[(γz −mz)Eq(θ) log θz]

=
(
Eq(θ) log θz

) (
Eq(~z)(γz −mz)

)
=

(
Eq(θ) log θz

) (
γz − Eq(~z)mz

)
= 0.

To show (7), we first use (4) to evaluate

log
B(~m+ ~α)
B(~γ + ~α)

=
∑
j

(log Γ(mj + αj)− log Γ(γj + αj))

+ log Γ

∑
j

γj +
∑
j

αj

− log Γ

∑
j

mj +
∑
j

αj

 .

From the definitions of γj (2), and mj , we have
∑
j γj =

∑
jmj = m so that the last two terms in

the above expression disappear. Taking expectations over q(~z) now yields (7).

Proof of Lemma 2: Let F (q1, . . . , qm) denote the expectation E[f(X1 + . . .+Xm)]. Using iterated
expectation we may rewrite

F (q1, . . . , qm) =
∑
X1,X2

Pr(X1, X2)E[f(X1 + . . .+Xm)|X1, X2]

=
∑
x1,x2

Pr(X1 = x1, X2 = x2)E[f(X3 + . . .+Xm)].

By independence, Pr(X1 = x1, X2 = x2) = Pr(X1 = x1) Pr(X2 = x2). Also, each random
variable Xi takes 0, 1 values, and the probabilities are given by Pr(Xi = 1) = qi,Pr(Xi = 0) =
1− qi. Define random variable Y = X3 + . . .+Xm. Using these facts in the previous equation,

F (q1, . . . , qm) = (1− q1)(1− q2)E[f(Y )] + q1q2E[f(2 + Y )]
+E[f(1 + Y )](q1(1− q2) + q2(1− q1))

= (q1 + q2) (E[f(1 + Y )]− E[f(Y )])
+q1q2(E[f(Y )] + E[f(2 + Y )]− 2E[f(1 + Y )]).
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Fix q3, . . . , qm. Since the qi’s sum to a fixed value, fixing implies q1 + q2 is a constant. Note
E[f(Y )],E[f(Y + 1)],E[f(Y + 2)] are constants independent of q1, q2. Maximizing F is now
equivalent to maximizing the second term of the right side of the last equation. By linearity of
expectation, E[f(Y )] + E[f(2 + Y )]− 2E[f(1 + Y )] = E[f(Y ) + f(2 + Y )− 2f(1 + Y )]. Since
f is convex, the previous term is non-negative. Thus we need to maximize q1q2 under the constraint
that their sum is fixed. The optimum choice is q1 = q2.

Starting from a choice of q1, . . . , qm that maximizes F , we may, by our arguments, set the minimum
and maximum of the qi’s, say q1 and q2, to a common value (q1 +q2)/2, without decreasing F . This
decreases the potential Φ(q1, . . . , qm) ∆=

∑
i,j |qi− qj | of the optimal solution by a factor of at least

(1 − 1
m2 ). By repeating this process, we can find optimal solutions with arbitrarily small potential.

Continuity of F now implies a solution with zero potential is optimal. We end by observing that
zero potential is achieved only by q1 = . . . = qm = γ

m .

Proof of Lemma 3: Assume without loss of generality q 6= 0. Let µ = mq be the mean. Define

f(c) ∆= E
[
log Γ(X)|(X − µ) ∈ [−c

√
m, c
√
m]
]
.

Using the following concentration bound

Pr[|X − µ| > r] < 2e−r
2/2m (8)

we have
E [log Γ(X + a)] ≤ f(c) + 2e−c

2/2 log Γ(m+ a). (9)

Now

f(c) = log Γ(µ+ a) +
c
√
m∑

i=1

{Pr(µ− i) log Γ(µ− i+ a) + Pr(µ+ i) log Γ(µ+ i+ a)}. (10)

We will first obtain bounds on each summand term. Using Γ(x+ 1) = xΓ(x), we get

log Γ(µ+ a+ i) = log Γ(µ+ a) +
i−1∑
r=0

log(µ+ a+ r)

= log Γ(µ+ a) + i log(µ+ a) +
i−1∑
r=0

log(1 +
r

µ+ a
).

From 1 + x ≤ exp(x), we may upper-bound the last summation by

i−1∑
r=0

r

µ+ a
≤ i2

2(µ+ a)
.

Therefore we get

log Γ(µ+ a+ i) ≤ log Γ(µ+ a) + i log(µ+ a) +
i2

2(µ+ a)
. (11)

Similarly, we can get

log Γ(µ+ a− i) = log Γ(µ+ a)− i log(µ+ a)−
i∑

r=1

log(1− r

µ+ a
).

This time we will use− log(1−x) ≤ log(1 + 2x) ≤ 2x; but this only holds in the range x ∈ [0, 1
2 ).

Since in our case x ≤ c
√
m

mq+a , for this to be applicable it suffices if m is at least 4c2

q2 . We can now
bound

log Γ(µ+ a− i) ≤ log Γ(µ+ a)− i log(µ+ a) +
i2

µ+ a
+

i

µ+ a
. (12)
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Using (11) and (12), we can upper-bound each summand in (10) by

log Γ(µ+ a) {Pr(µ+ i) + Pr(µ− i)}

+ log(µ+ a) {Pr(µ+ i)i− Pr(µ− i)i}+
3i2 + i

µ+ a
{Pr(µ+ i) + Pr(µ− i)} .

Summing up the first term over i we get at most log Γ(µ + a). The second term becomes at most
log(µ + a)mPr(|X − µ| > c

√
m) since the mean is µ. Finally, the third term is at most three

times the sum of the variance, µ(1 − q), and a term smaller than the variance, divided by µ + a.
Combining, and using the concentration bound in (8) we get

f(c) ≤ log Γ(µ+ a) +O(1− q) +
c√
m

+ 2e−c
2/2m logm.

Choosing c = 2
√

logm and plugging into (9), we get

E [log Γ(X + a)] ≤ log Γ(µ+ a) +O(1− q) + o(1)

with o(1) = O(
√

logm
m ). With this choice of c, the required lower bound on m is 1/q2+o(1).
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