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Abstract

We consider the problem of obtaining the approximate mariraiposteriories-
timate of a discrete random field characterized by pairwigentials that form a
truncated convex model. For this problem, we propose anawgat StMINCUT
basedmove makinglgorithm. Unlike previous move making approaches, which
either provide a loose bound or no bound on the quality of theti®n (in terms
of the corresponding Gibbs energy), our algorithm achi¢iressame guarantees
as the standard linear programming) relaxation. In other words, for the case of
truncated linear metric we obtain a multiplicative bound ef+/2, while for trun-
cated quadratic semi-metric we obtain a multiplicativermof O(v/M) (where
M is the truncation factor). Compared to previous approabhssd on thep re-
laxation, e.g. interior-point algorithms or tree-rewegghmessage passingRw),
our method is faster as it uses only the efficiemistcuT algorithm in its design.
Furthermore, it directly provides us with a primal soluti@mlike TRw and other
related methods which solve the dual of thg. We demonstrate the effectiveness
of the proposed approach on both synthetic and standarda&aproblems.

Our analysis also opens up an interesting question regatdarelationship be-
tween move making algorithms (such asexpansion and the algorithms pre-
sented in this paper) and the randomized rounding schenedsiith convex re-
laxations. We believe that further explorations in thisedtion would help design
efficient algorithms for more complex relaxations.

1 Introduction

Discrete random fields are a powerful tool for formulatingesal problems in Computer Vision
such as stereo reconstruction, segmentation, imageistitelnd image denoising [28]. Given data
D (e.g. an image or a video), random fields model the probglufia set of random variables
i.e. either the joint distribution of andD as in the case of Markov random fieldgRF) [2] or the
conditional distribution ofv givenD as in the case of conditional random fieldR€) [21]. The
word ‘discrete’ refers to the fact that each of the randoniabdesv, € v = {vg, - ,v,—1} can
take one label from a discrete det {lo,- - ,1;—1}. Throughout this paper, we will assumegF
framework while noting that our results are equally apfiledor ancrF.

An MRF defines a neighbourhood relationship (denotedpwgver the random variables such that
(a,b) € &€ if, and only if, v, andv, are neighbouring random variables. GivenvrF, alabelling
refers to a functiorf such that

f:40,--- ,n—1} —{0,--- Jh —1}. 1)

In other words, the functiorf assigns to each random variablg € v, a labell;,) € 1. The
probability of the labelling is given by the following Gibloéstribution:

Pr(f,D[0) =

g7 (- D:0)) @



where# is the parameter of therF andZ(0) is the normalization constant (i.e. the partition func-
tion). Assuming a pairwis®IRF, the Gibbs energy is given by:

QULD0) = basayt D banraro 3)

Vo EV (a,b)e€

wheref!. Fa) and@ab Fa)f(v) &€ the unary and pairwise potentials respectively. Thersepipts

‘1" and 2 indicate that the unary potential depends on thigelling of one random variable at a
time, while the pairwise potential depends on the labeliihtyvo neighbouring random variables.

Using equation (2) it follows that the labellingwhich maximizes the posteri@(f, D|@) can be
obtained by minimizing the Gibbs energy. The problem of miitg such a labelling’ is known as
maximuma posteriori(MAP) estimation. In this paper, we consider the problemmaf estimation
of random fields where the pairwise potentials are defingdimcated convex modds]. Formally
speaking, the pairwise potentials are of the form

9§b;.f(a)f(b) = wep min{d(f(a) — f(b)), M} (4)

wherew,;, > 0 for all (a,b) € &, d(-) is a convex function and/ > 0 is the truncation factor.
Recall that, by the definition of Ishikawa [10], a functiéf) defined at discrete points (specifically
over integers) is convex if, and only if,

d(z+1) — 2d(z) + d(z — 1) > 0,Vz € Z. (5)

It is assumed thad(z) = d(—z). Otherwise, it can be replaced y(z) + d(—=z))/2 without
changing the energy of any of the possible labellings of éimelom field [29]. Examples of pairwise
potentials of this form include the truncated linear mesma the truncated quadratic semi-metric,
i.e.

ezb;f(a)f(b) = wep min{|f(a) — f(b)], M},
eib;j'(a)f(b) = Wab mln{(f((l) - f(b))Qa M} (6)

Before proceeding further, we would like to note here thattiethod presented in this paper can be
trivially extended tatruncated submodular modefa generalization of truncated convex models).
However, we will restrict our discussion to truncated conm@dels for two reasons: (i) it makes
the analysis of our approach easier; and (i) truncatedeopairwise potentials are commonly used
in several problems such as stereo reconstruction, imagaseg and inpainting [28]. Note that
in the absence of a truncation factor (i.e. when we only haveex pairwise potentials) the exact
MAP estimation can be obtained efficiently using the methodssbikbwa [10] or Veksler [29].
However, minimizing the Gibbs energy in the presence of adation factor is well-known to be
NP-hard. Given their widespread use, it is not surprising feaeral approximateAP estimation
algorithms have been proposed in the literature for thecited convex model. Below, we review
such algorithms.

1.1 Related Work

Given a random field with truncated convex pairwise potégitlelzenszwalb and Huttenlocher [7]
improved the efficiency of the popular max-product beliefrgation P) algorithm [22] to obtain
the MAP estimate.BP provides the exagAP estimate when the neighbourhood struct€iref the
MRF defines a tree (i.e. it contains no loops). However, for a ggMRF, BP provides no bounds on
the quality of the approximateAp labelling obtained. In fact, it is not even guaranteed toveoge.

The results of [7] can be used directly to speed-up the geeighted message passing algorithm
(TRW) [30] and its sequential variamRw-s [13]. Both TRw and TRw-S attempt to optimize the
Lagrangian dual of the standard linear programmir®) felaxation of themap estimation prob-
lem [6, 19, 25, 30]. UnlikesP andTRW, TRW-Sis guaranteed to converge. However, it is well-known
that TRw-s and other related algorithms [8, 17, 26, 27, 31] suffer frbmnfollowing problems: (i)
they are slower than algorithms based on efficient graps{28&{; and (ii) they only provide a dual
solution [13]. The primal solution (i.e. the labellirg is often obtained from the dual solution in an
unprincipled mannér Furthermore, it was also observed that, unlike graph{sased approaches,

1We note here that the recently proposed algorithm in [23]adiy provides the primal solution. However,
it is much slower than the methods which solve the dual.



TRW-S does not work well when the random field models long rangeaaet®ons (i.e. when the
neighbourhood relationshif is highly connected) [15]. However, due to the lack of expemtal
results, it is not clear whether this observation appliekéamethods described in [8, 17, 26, 27, 31].

Another way of solving theP relaxation is to resort to interior point algorithms [4].tAbugh inte-
rior point algorithms are much slower in practice tht@w-s, they have the advantage of providing
the primal (possibly fractional) solution of the relaxation. Chekuréet al. [6] showed that when
using certain randomized rounding schemes on the primatfisol(to get the final labelling), the
following guarantees hold true: (i) for Potts model (i€f (a) — f(b)) = | f(a) — f(b)|andM = 1),

we obtain a multiplicative bourfcbf 2 by using the rounding scheme of [12]; (ii) for the truncated
linear metric (i.ed(f(a) — f(b)) = |f(a) — f(b)| and a generald > 0), we obtain a multiplicative
bound of2 + v/2 using the rounding scheme of [6]; and (iii) for the truncageddratic semi-metric
(i.e.d(f(a) — f(b)) = (f(a) — f(b))* and a general/ > 0), we obtain a multiplicative bound of

O(v/M) using the rounding scheme of [6].

The algorithms most related to our approach are the soecalta/e making methods which rely on
solving a series of graph-cut (specificallystncuT) problems. Move making algorithms start with
an initial labelling f, and iteratively minimize the Gibbs energy by moving to adrtibelling. At
each iteration, (a subset of) random variables have thempfi either retaining their old label or
taking a new label from a subset of the labkeld=or example, in theys-swap algorithm [5] the
variables currently labelled, or /3 can either retain their labels or swap them (i.e. some viasab
labelled!,, can be relabelled dg and vice versa). The recently proposed range move algof28m
modifies this approach such that any variable currentlyllethé, wherei € [«, 8] can be assigned
any labell; wherej € [«, 3]. Note that the new labé} can be different from the old labél, i.e.

i # j. Both these algorithms (i.e,3-swap and range move) do not provide any guarantees on the
quality of the solution.

In contrast, thex-expansion algorithm [5] (where each variable can eith&iméts label or get as-
signed the labédl, at an iteration) provides a multiplicative boundfor the Potts model angih/
for the truncated linear metfic Gupta and Tardos [9] generalized theexpansion algorithm for
the truncated linear metric and obtained a multiplicativard of4. Both a-expansion [5] and its
generalization [9] do not provide any bounds for the truedajuadratic semi-metric. Komodakis
and Tziritas [18] designed a primal-dual algorithm whicbypdes a bound o M for the truncated
guadratic semi-metric. Note that these bounds are infewithie bounds obtained by the relax-
ation. However, all the above move making algorithms usg asingle stmiNCUT at each iteration
and are hence, much faster than interior point algorithiRg;, TRW-S andBP.

1.2 Our Results

We further extend the approach of Gupta and Tardos [9] in taygsKsection 2). The first extension
allows us to handle any truncated convex model (and notjustated linear). The second extension
allows us to consider a potentially larger subset of labeéaah iteration compared to [9]. As will
be seen in the subsequent analysis (section 3), these twosins allow us to solve theap
estimation problem efficiently using stNCcUT whilst obtaining the same guarantees as ithe
relaxation [6]. Furthermore, similar to other move makihgpaithms, our approach does not suffer
from the problems of Rw-s mentioned above. In order to demonstrate its practicalwsegyrovide

2Let f be the labelling obtained by an algorithm(e.qg. in this case thep relaxation followed by the
rounding scheme) for a classafp estimation problems (e.g. in this case when the pairwiserpiats form a
Potts model). Lef* be the optimal labelling. The algorithmis said to achieve a multiplicative bound ®f
if for every instance in the class efap estimation problems the following holds true:

b <C§2((J”J27%;0(;)> =7

whereE(-) denotes the expectation of its argument under the roundinense.
3Note that sincex-expansion does not involve any randomized rounding, i ® provide a multiplicative
bound ofo for a class ofvAP estimation problems if, and only if, the following holds értor all instances of

that class:
Q(f,D:0) _
Q(f*,D;0) —



Initialization
- Initialize the labelling to some functiofy . For examplef;(a) = 0 for all v, € v.
Iteration
- Choose an intervdl,, = [im, + 1, jm] Where(j,, — i) = L such thati(L) > M.
- Move from current labelling/,,, to a new labellingf,,, 11 such that
fmt1(a) = fm(a) OF fri1(a) € Iy, Vo, € V.

The new labelling is obtained by solving thensiNcuT problem on a graph described§r2.1.
Termination
- Stop when there is no further decrease in the Gibbs energnfointervall,,,.

Table 1: Our Algorithm. As is typical with move making methods, ouprapch iteratively goes
from one labelling to the next by solving annstNCUT problem. It converges when there remain no
moves which reduce the Gibbs energy further.

a favourable comparison of our method with several statdhefartmaP estimation algorithms
(section 4).

2 Description of the Algorithm

Table 1 describes the main steps of our approach which refielving an sMINCUT problem

at each iteration. Recall that, given a directed, non-megjstweighted graph with two terminal
verticess (the source) antl(the sink), an st-cutis defined as a partitioning of the gegiof the graph
into two disjoint sets such that the first partition containghile the second partition containsThe
st-MINCUT problemiis to find the minimum cost st-cut, where the cost aftasomeasured as the sum
of the weights of the edges whose starting point belongstéirt partition and ending point belongs
to the second partition. The sttNCUT problem has several efficient, provably polynomial-time
solvers [14] and is used as a building block for several aqprateMAP estimation techniques [5,
9,18, 29].

Unlike the methods described in [5, 29] we will not be able htain the optimal move at each
iteration. In other words, if in thex*" iteration we move from labef,, to f,,,1 then it is possible
that there exists another labellirfg, . ; such that

finga(a) = fm(a) or £, 1 (a) € I, Yva €V
Q(fny1: D5 0) < Q(fmi1,D;6). (7
However, our analysis in the next section shows that we tililke able to reduce the Gibbs energy
sufficiently at each iteration so as to obtain the guarardétiee LP relaxation.

We now turn our attention to designing a method of moving ftatrelling f,,, to f,,+1. Our ap-
proach relies on constructing a graph such that every atitthie graph corresponds to a labelling
f' of the random variables which satisfies:

f'(a) = fm(a) or f'(a) € Iy, Yva € v. (8)

The new labellingf,,, 1 is obtained in two steps: (i) we obtain a labellifigwhich corresponds to
the stMINCUT on our graph; and (ii) we choose the new labellfyg, 1 as

P { I ot iee, QU D0 QU Ds0), ©)

otherwise.

Below, we provide the details of the graph construction.

2.1 Graph Construction

At each iteration of our algorithm, we are given an intetal= [i,, + 1, j,,,] of L labels (i.e(j,,, —
im) = L) whered(L) > M. We also have the current labellirfg, for all the random variables.
We construct a directed weighted graph (with non-negateights)g,, = {V.., Em, cm (-, -)} such
that for eachy, € v, we define vertice$a;,, +1,a;,,+2, - ,a;,, } € V. In addition, as is the case
with every stMINCUT problem, there are two additional vertices called ternsimgtich we denote



by s (the source) and (the sink). The edges € &, with capacity (i.e. weight},, (e) are of two
types: (i) those that represent the unary potentials of allialg corresponding to an st-cut in the
graph and; (ii) those that represent the pairwise potentiithe labelling.

cals,a, L) 07,

Figure 1: Part of the graphg,, containing the terminals and the vertices correspondinghi®
variablewv,. The edges which represent the unary potential of the neglliab are also shown. The
terme,, (s, a;,, +1) IS shown in equation (10)

Representing Unary Potentials For all random variables, € v, we define the following edges
which belong to the set,,:

For allk € [iy, + 1,Jm), edgeqag, ax+1) have capacity,, (ax, ag+1) = Hé;k.
For allk € [iy, + 1,7m), edgeqak1, ax) have capacity,, (ax+1, ar) = oo.
Edgega;,,,t) have capacity,(a;,,,t) = 6, .
Edgeqt, a;,,) have capacity,, (t, a;,,) = oco.
Edgeqs, a;,,+1) have capacity

ok b P

s if fm(a) &I
. — a; fm (a) m "
em (8, @i +1) { 50 otherwise (10)

6. Edgeqa;,, 11, s) have capacity,,(a;,, +1,s) = oo.

Fig. 1 shows the above edges together with their capaciiesrfe random variable,. Note that
there are two types of edges in the above set: (i) with finitacdy; and (i) with infinite capacity.
Any st-cut with finite cost contains only one of the finite ceibaedges for each random variable
v,. This is because if an st-cut included more than one finitacipedge, then by construction it
must include at least one infinite capacity edge thereby mggks cost infinite [10, 29]. We interpret
a finite cost st-cut as a relabelling of the random varialde®kows:

k if st-cut includes edgéuy, ar+1) wherek € [in, + 1, jm),
"(a) = { Jm  if st-cutincludes edgéu;,, , ), (11)
fm(a) if st-cutincludes edgés, a;,, +1).

Note that the sum of the unary potentials for the labellffhigs exactly equal to the cost of the st-cut
over the edges defined above. However, the Gibbs energy tdlik#éing also includes the sum of
the pairwise potentials (as shown in equation (3)). Unlie tinary potentials we will not be able
to model the sum of pairwise potentials exactly. Howevenuilebe able to obtain its upper bound
using the cost of the st-cut over the following edges.

Representing Pairwise Potentials  For all neighbouring random variableg andwy, i.e. (a,b) €
£, we define edgex, by ) € &, where either one or both éfandk’ belong to the s, + 1, j..]
(i.e. at least one of them is different froip + 1). The capacity of these edges is given by

The above capacity is non-negative due to the factdhgt> 0 andd(-) is convex. Furthermore,
we also add the following edges:
cm(ak, apt1) = 452 (d(L — k +im) +d ), ¥(a,b) € E,k € [im +1,7m)
Cm(bk/,bk/+1) = 2 (d(L k' + ’Lm) +d(k' — Zm)) V( b) €€, kK e [im + 1,jm)
cm(aj,, ,t) = cm(bj,,, t) = “etd(L),V(a,b) € €. (13)

Wap
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Figure 2:(a) Edges that are used to represent the pairwise potentialwofteighbouring random
variablesv, andwv, are shown. Undirected edges indicate that there are opgosdyes in both
directions with equal capacity (as given by equation 12)reBtied dashed edges, with capacities
shown in equation (13), are added to ensure that the graphetsdtie convex pairwise potentials
correctly. (b) An additional edge is added whefy,(a) € I, and f,,,(b) ¢ I,,. Here, ko =
wapd(L). (€) A similar additional edge is added whef,(a) ¢ I, and f,,,(b) € I,,,. (d) Five
edges, with capacities as shown in equation (20), are addethi,,(a) ¢ I, and f,,,(b) & L.
Undirected edges indicate the presence of opposing edgle®gial capacity.

Fig. 2(a) provides an illustration of the above edges. Thiewing Lemma shows that we are now
able to model convex pairwise potentials exactly (up to afitag constant).

Lemma 1: For the capacities defined in equations (12) and (13), theo€tise st-cut which includes
the edgegay, ar+1) and (b, bi 1) (i.e.v, andv, take labeld, andly respectively) is given by
wabd(k — k/) + Kqp, Whererk,, = wabd(L).

Proof: The following proof is due to [29] and is included here for gake of completeness only.
We start by observing that due to the presence of the infiipacity edges representing unary
potentials, the st-cut will consist of only the followingggek:

(akaak-‘rl) U (bk’7bk’+1) U {(ai’7bj’)7im + 1 S i/ S kak/ + 1 S j/ S ]m}
U{(ai/,bj/),k—i—l Silgk,im-‘rlgjlgkl}. (24)

Using equations (12) and (13) to sum the capacities of theeabdges, we obtain the following
expression:

Lok (d(L =k + i) + d(k — i) + %22 (d(L — K + i) + d(K — i)
Y S B A — 4 1) = 20— ) + d(@ 5 = 1)

I e e (d( 1) = 2d( — ) + (i~ 1)), (15)




In order to simplify this expression, consider
Foprgn (A7 =+ 1) = 2d(0’ — ') +d(i — '~ 1)
d(i' — k") —=2d(i' — k' = 1)+ d@ — K —2)

+ dii' — K —1) —2d(i — k' —2) +d(i’ — k' —3)
+ A’ = jm +2) = 2d(i" — jm + 1) + d(i’ — jm)
+ d(i" = jm + 1) = 2d(7 — jp) +d(i" — jm — 1)

= d@i' —k)—d({@' =K —1)—d(i' — jm) +d(@’ — jm + 1). (16)
Hence, it follows that
S i a1 o (G — '+ 1) = 2d(i" = ') + d(i — 5" — 1))
Alim + 1= K) —d(im — k') = d(im — jm + 1) + d(im — Jm)
+ dlim +2—kF)—dlim+1—F)—d(im — jm +2) + d(im — jm + 1)

+ dlk—k —1)—dk -k —2)—d(k — jm — 1) + d(k — jm — 2)
dlk—kK)—dk -k —1)—d(k — jm) +dk — jm — 1)

dlk — k') —d(jm — k) — d(K —im) + d(fm — im)

dlk —F)—d(L —k+im) —d(im — k") + d(L), a7
where the last expression is obtained using the fact that j,, — i,,,. Note that we also use

the fact thatd(z) = d(—=z). As noted before, if this is not the case th&m:) can be replaced by
(d(x) + d(—z))/2 to obtain an equivalemtAP estimation problem. Similarly, it can be shown that

3’" " 1 Z drmiy 1 (@ ="+ 1) = 2d(i — j') +d(i" — j' = 1))
= dlk—K)—d(L—F +ip) — d(im — k) + d(L), (18)
Substituting equations (17) and (18) into expression (@B)pbtain the cost of the st-cut as
Db (d(L =k +im) +d(k —ip)) + 252 (d(L = k' + i) + d(K — i)

+

+ wa (d(k — k') — d(L — k + i) — d(im — k) + d(L)
i et (d(k — K') = d{L — K' + i) — (i — k) + d(L))
= wabd(kz k' ) + Kab- (19)

This proves that the capacities in equations (12) and (13)etnmonvex pairwise potentials exactly
up to an additive constant. [

Since the cost of the st-cut exactly models the convex psérywbtential plus a constant, it follows

that the above graph (together with the edges representiany potentials) can be used to find the
exactMAP estimate of the random field with convex pairwise potentidivever, we are concerned

with the NP-hard case where the pairwise potentials are truncatedrdier o model this case, we

incorporate some additional edges to the above set. Thel#oadl edges are best described by
considering the following three cases for @l b) € £.

1. If fu(a) € I, and f,,(b) € I, then we do not add any more edges in the graph (see
Fig. 2(a)).

2. If fru(a) € I, andf,,(b) ¢ I, thenwe add an edde; , 1, b;,,+1) with capacityw,, M +
Kab/2 (see Fig. 2(b)). Similarly, iff..(a) ¢ I, and f,,(b) € I, then we add an edge
(bi 41,04, +1) With capacitywa, M + ka3 /2 (see Fig. 2(c)).

3. If fu(a) ¢ I, and f,,(b) ¢ I, we introduce a new vertex,,;*. Using this vertex,s,
five edges are defined with the following capacities (see K)):

Cm(aim+1apab) - Cm(paln aierl) = wabM + Hab/27
Cm(bim+1apab) = Cm(paln bierl) = wepM + Hab/27
Cm(8,Pab) = Ogy. 1,0 (a) g (v) + Kab- (20)

“We note here that an equivalent graph can be constructedwrittilding the vertex,; using the method
of [24]. However, the vertex,, helps make the analysis easier.



This completes our graph construction. Given the g@ptwe solve the staiNcuT problem which
provides us with a labelling’ as described in equation (11). The new labelljiag, ; is obtained
using equation (9).

2.2 Propertiesof the Graph

We now describe the properties of the above graph constryatiith the aim of facilitating the
analysis of our algorithm for the case of truncated lineat tanncated quadratic models.

Property 1 As mentioned above, the cost of the st-cut includes exab#ysum of the unary
potentials associated with the labellifig i.e.>"

Vo EV a f (a)"

Property 2 For(a,b) € &, if f'(a) = fm(a) ¢ L, andf’(b) = f.(b) ¢ I, then the cost of the
st-cutincludes exactly the pairwise potenﬂﬂ;f,(a)f,(b) plus a constant,;. This is due to the fact
that the st-cut contains the ed@e p.,) whose capacity iﬁgb,fm(a)fm(b) + kqp. Note that in this

casep,, belongs to the partition containing the sinkThis can be easily verified by observing that
the cost of the st-cut would increasepif, belonged to the partition containing the sousggince
this would include edgépas, a;,, +1) and(pasp, bi,, +1) in the st-cut).

Property 3 For(a,b) € &, if f'(a) € I,, andf’(b) € I,,, such that
d(f'(a) — f'(b)) < M, (21)
then the cost of the st-cut includes exactly the pairwise il 93;;;; 20 plus a constant,,
ie
wapd(f'(a) = f'(b)) + Kap- (22)
This follows from the fact that in this case the pairwise ptitd lies in the ‘convex’ part of the

truncated convex model. For the convex part, our graph oectgin is exactly the same as that
of [29] which models the pairwise potentials exactly up te tlonstant:,;, (see Lemma 1ig 2.1).

Property4 For(a,b) € &, if f/(a) € I, andf’(b) € I,,, such that

d(f'(a) = f'(0)) > M, (23)
then the cost of the st-cut overestimates the pairwise p'at@jb;f,(a) (v @S
wapd(f'(a) = f'(D)) + Kab- (24)

This again follows from the fact that our graph constructimils down to that of [29] where the
‘truncation’ part of the truncated convex model has beerrestanated by the convex function
wapd(-) (see Lemma 1§ 2.1).

Property 5 For(a,b) € &, if f'(a) € I andf’( ) = fm(b) ¢ I, then the cost of the st-cut
overestimates the pairwise poten'ﬁ@ (@) f'(b) &

wapd(f'(a) = (im + 1)) + wapd' (f'(a) = (im + 1)) + wapM + Kap, (25)
whered'(-) denotes the following function:
d'(z) = d(z +1) — d(z) — d(1) + @,vx > 0. (26)

Note thatd’ (-) is only defined for a non-negative argument. Clearly, theiswgnt ofd’(-) in equa-
tion (25) is non-negative sinc(a) € [iym + 1, jm]. For exampled’(z) =0 whend(-) is a linear

metric andd’(z) = 2z whend(-) is the quadratic semi-metric. Similarly, ff (a) = fin(a ) ¢ I,
andf’(b) € I,,, then the cost of the st-cut overestimates the pairwise patéﬁb Fla)f(b) &
Wabd(f'(b) = (im + 1)) + wapd (f'(0) = (i + 1)) + wap M + Kap- (27)

The above property can be shown to be true using the follolwamgma.
Lemma 2: For the graph described 2.1, property 5 holds true.



Proof: We will show the proof forf’(a) € I,, and f'(b) = f,(b) ¢ I,,,. The proof forf’'(a) =
fm(a) ¢ I, andf’(b) € I,,, can be obtained from the following arguments trivially.

There are two possible cases to be consideredt,({(i) € I,; and (ii) fn(a) ¢ In,. Inthe first
case, the edges that specify the st-cut are given by

(agr(a), apriayr1) U{(air, bjr)im +2 <4 < f(a),im +1 < §" < jim}
U{(ai,,+1,b; )Jm+2 < < JmpU (@i, 41, bi,41) (28)
In the second case, the st-cut is specified by
(apr(a), apr(ay+1) UL(air, bjr),im +2 <" < f'(a),im +1 < j' < jin}
U{(alerlv b] )Jm +2< J < ]m} U (ptlb7 bierl)- (29)

Note that in this casg,;, belongs to the same partition as the sourc&his can be shown easily
by observing that the cost of the st-cut increases jfbelongs to the partition containing the sink
t (since this would include edgés;, +1,p.s) and(s, pas) in the st-cut). The two cases differ only
in that the first includes the edde;,, +1,b:,,+1) and the second includes the edges, b;,, +1)-
However, the capacity of both these edges is equal,td/ + «.»/2. Hence it follows that the cost
of the st-cut in both the cases is the same. Therefore it ficguit to show that the Lemma holds
true for the first case.

The cost of the st-cut for the edges in equation (28) is giwen b
“t (d(L — f'(a) + im) + d(f'(a) = im))

S S e (d( — 4 1) - 2d(8 — )+ d(i — 1)

+ jﬂ:;imw Lab (d(im — j' +2) — 2d(im — ' + 1) + d(im — j'))

+ Wap M + “5b. (30)
In order to simplify the above expression, we begin by olisgrthat

T (A = g+ 1) = 2d(i — §) + d(i — ' — 1))
= d({i' —im) —d(@ —im —1) —d(@ — jm) +d{E — Jm — 1). (31)
The above equation is obtained by substituting- ,,, in equation (16). It follows that
S e (d(i — 7+ 1) = 2d(8 — )+ d(i — § 1)
d(2) —d(1) — d(im — Jm + 2) + d(im — jm + 1)

+ d(3) — d(2) — d(im — jm + 3) + d(im — jm + 2)

+ d(f'(a) —im —1) = d(f'(a) —i ) d(f'(a) = jm — 1) + d(f'(a) = jm — 2)

+ d(f'(a) —im) — d(f'(a) — im — 1) = d(f'(a) = jm) + d(f'(a) = jm — 1)
d(f'(a) = im) — d(jm — f'(a)) — d(1) + d(jm — im — 1)

d(f'(a) —im) —d(L — f'(a) 4+ im) — d(1) + d(L — 1), (32)
where the last expression is obtained using ji, — in,. Once again, we use the propetty) =
d(—z). Similarly, by substituting:’ = i,,, + 1 in equation (16), we get

J’,ﬂ_lmﬁ 2t (d(ipy — " +2) = 2d(ipy — ' 4+ 1) + d(im — J'))
= d(O) - d(l) - d(jm —im — 1) + d(jm - im)
= d(0) —d(1) —d(L — 1)+ d(L). (33)
By simplifying expression (30) using equations (32) and (8% cost of the st-cut is given by
gt (d(L — f'(a) +im) +d(f'(a) —im))

+ =5 (d(f'(a) — i) — d(L = f'(a) +im) — d(1) + d(L — 1))

+ “st (d(0) —d(1) —d(L — 1) +d(L))

+ wabM + %

= wapd(f'(a) = (im + 1)) + wapd' (f'(a) = (im + 1)) + wap M + Kap, (34)



where the last expression is obtained using the definitiafi(ef in equation (26) and the fact that
Kab = wapd(L). This proves the Lemma. |}

In summary, property 1 tells us that the cost of the st-cuttyxanodels the sum of the unary
potentials. Properties 2 and 3 specify the cases where #teofdhe st-cut exactly models the
pairwise potentials, while properties 4 and 5 specify timeai@ing cases where the cost of the st-cut
overestimates the pairwise potentials. In other wordsGibbs energy of the labelling/, and hence
the Gibbs energy of,,,+1, is at most equal to the cost of thestNCUT on G,,,.

Note that our graph construction is similar to that of Guptd @ardos [9] with two notable ex-
ceptions: (i) we can handle any general truncated convexeh@l not just truncated linear as in
the case of [9]. This is achieved in part by using the graptstantion of [29] which generalizes
Ishikawa’s previous work on linear metric [11]; and (ii) waue the freedom to choose the value of
L, while [9] fixed this value taM. A logical choice would be to use that value bfwhich mini-
mizes the worst case multiplicative bound for a particulass of problems. The following analysis
obtains such a value df for both the truncated linear and the truncated quadratibaiso Our worst
case multiplicative bounds are exactly those achieved éyrirelaxation (see [6]).

3 Analysisof the Algorithm

Before we begin our analysis, we require the following défins. Letr € [0, L — 1] be a uniformly
distributed random integer. Usingwve define the following set of intervals

S, ={[0,r],[r+1,r+ L], [r + L+ 1,7+ 2L],--- ,[.,h — 1]}, (35)

whereh = [1] is the total number of labels associated with tiver. We denote an optimal labelling
of theMRF by f*. Given such a labelling* and an interval,,, = [i,, + 1, jm] € S, we define the
following five sets:

. v(I;,) € v suchthab, € v(I,,) if, and only if, f*(a) € L.

. E(In) C € such thata,b) € £(1,,) if, and only if, f*(a) € I,, and f*(b) € I,,,.

1(I;,) C € suchthata,b) € £(1,,) if, and only if, f*(a) € I,,, and f*(b) ¢ L,,.

>(In) C € such thafa, b) € £(I,,,) if, and only if, f*(a) ¢ I,, and f*(b) € I,,,.

D(Ip) = Di(In) UD2(Inm).

. D
. D

[ U U R

In other words,v(I,,) contains all the random variables which take an optimalllaloein I,,,
E(I,,) contains the set of all edges in the graphical model ofMR& whose endpoints take an
optimal labelling in the interval,,,, andD(I,,,) contains edges where only one endpoint takes an
optimal labelling inf,,,.

Clearly, the following equation holds true:

D bor@= D D baray (36)

Va €V I €Srva€v(Im)

sincef*(a) belongs to one and only one intervalsn for all v, € v. In order to make the analysis
less cluttered, we introduce the following shorthand riotefor some terms:
1. For(a,b) € £(I,,), we denotev,,d(f*(a) — f*(b)) by el;.

2. For(a,b) € D1(1,,), we denotev,,d(f*(a) — (im~+1))+wed (f*(a) = (im~+1)) +wepM
by el

3. For(a,b) € Dy(In), we denotevayd(f* (b) = (im+1)) +wapd (f*(b) = (im+1)) +wap M
by e}*.
We are now ready to prove our main results, starting with dflewing Lemma.

Lemma 3: At an iteration of our algorithm, given the current labedifi,, and an interval,,, =
[im + 1, jm], the new labellingf,,,+1 obtained by solving the stiNncuT problem reduces the Gibbs
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energy by at least the following:
Y vuev(in) Vs (@) T X ab)ee 1) UD(En) Yabifn (@) un )
- (Zvaev(lm) 05 pr(a) T 2 (ap)ee(ln) Cab (37)
+ 2 (ab)eDi (1) €4 T 2o (a)eDa (1) eZn) -

Proof: From the arguments i§2.2, it is clear that the Gibbs energy of the new labellfig,; is
bounded from above by the cost of thematncuT. The cost of the stiNcUT itself is bounded
from above by the cost of any other st-cut in the grgph Consider one such st-cut which results
in the following labelling:

P B A () if Va € V(L)

fa)= { fm(a) otherwise. (38)
We will now derive the cost of this st-cut using the propexriie§ 2.2. We consider the following
Six cases:

1. For random variables, ¢ v(I,,) it follows from Property 1 that the cost of the st-cut will
include the unary potentials associated with such varsdstactly, i.e.

Y O (39)
Va %v(lm)

. For neighbouring random variables b) ¢ £(I,,,) U D(I,,) it follows from Property 2 that
the cost of the st-cut will include the pairwise potentialsaciated with such neighbouring
variables exactly up to a constany, i.e.

2
> (eab;fm(a)fm(b) + ’iab) : (40)
(@0)£E(1m) UD (L)

3. Forrandom variables, € v(I,,), it follows from Property 1 that the cost of the st-cut will
include the unary potentials associated with such varsadtactly, i.e.

1
> Ourar (“41)

'UaGV(Im)

N

4. For neighbouring random variablgs b) € £(1,,) it follows from Properties 3 and 4 that
the cost of the st-cut will include the following:

ST (el +ka). (42)
(a,b)eE(Im)

5. For neighbouring random variablés, b) € D:(I,,) it follows from Property 5 that the
cost of the st-cut will include the following:

S (e + kan) (43)
(a,b)eD1(Im)

6. For neighbouring random variablés, b) € D, (I,,) it follows from Property 5 that the
cost of the st-cut will include the following:

S () + Fab) (44)

(a,b)eD2(Ir)

The Gibbs energy off’ (i.e. Q(f’,D;0)), and henceQ(fn.+1,D;8), is at most the sum of
terms (39)-(44) minui(%b)eg kqp- It follows that the difference between the Gibbs energy of

the current labelling’,,, and the new labelling,,, 1, i.e Q(fmn, D;0) — Q(fm+1, D; 0), is at least
1 2
2 vaevitn) Yas (@) (@b €8 tm) U D) Pati i (@) i)
- (Zvaev(lm) ei;f'*(a) + Z(a,b)€£(lm) €ab

+ 2 (ah)eDr (1) €0 T 2o(a,b)eDa (L) ein) - (45)

11



This proves the Lemma. |]

Let f be the final labelling obtained using our algorithm. Sirfde a local optimum with respect to
all intervalsr,,,, it follows that the term (37) should be non-positive for &}l (otherwise the Gibbs
energy could be further reduced thereby contradictingdabethatf is the local optimum labelling).
In other words,

1 2
2vaev(tn) Yaif(a) T 2(ab)ee () UD(Im) Yabi o) 11)
< (Zuaev(lm) ezlz;f*(a) + 2 (ab)es(Dn) Cab
T2 () eDi (1) €a + 2(asb)eDa(ln) 63”) V. (46)

We sum the above inequality over ), € S,.. The summation of theHs is at least)(f, D; 6).
Furthermore, using equation (36), the summation of the @abwaquality can be written as

. 1
Q(fv D7 0) S ZUQGV 911;]”(“) +
2r,e8, (Z(a,b)ef(lm) Cab + Lab)eDi (1) €a T L(ab)eDs(rn) e;’n) ' @

We now take the expectation of the above inequality over thitoumly distributed random integer
r € [0, L —1]. TheLHs of the inequality and the first term on thReis (i.e.>_ Hé,f*(a)) are constants

with respect ta-. Hence, we get
. 1
Q(f7 D; 0) < Zvaev ea;f*(a) +
Y205, (Z(a,b)€£(lm) €ab T 2 (a0)eDr () €4 T 2(a,b)eDs(Im) ein) - (48)

We conclude by observing that this is the same bound thatt&@rasl by theLp relaxation. Thus,
using the analysis of [6] we obtain the following results.

Lemma 4: Whend(-) is linear, i.ed(x) = |x|, the following inequality holds true:

T2 Yr,es, (Z(a,b)eé‘(lm) €ab T 22 (ab)eDi (L) Ca” T 2o (ab)eDa(lm) elrvn)
< (2 + max {¥’ % ) Z(a,b)es ezb;f*(a)f*(b)‘ (49)
Proof: The following is a slight modification of the proof of Lemm&4f [6] and is presented here

for the sake of completeness. Since we are dealing with time#ted linear metric, the termg;,
eyt ande)* can be simplified as

eqp = Wan| f*(a) — f*(b)],
el = wep(f*(a) — iy — 1+ M),
eyt = wap(f*(b) — im — 14+ M). (50)

We begin by observing that theis of inequality (49) can be rewritten as

%Z Y ot Y e (51)

(a,b)e€E \E(Im)>3(a,b) Di1(Im)>(a,b) Ds(Im)>(a,b)

In order to prove the Lemma, we consider the following thrases for two neighbouring random
variables(a, b) € £.

Case l:d(f*(a), f*(b)) = | f*(a) — f*(b)] < L and hencef?, .. () = wabM.

In this case, itis clear thdt, b) ¢ £(I,,) for all intervalsI,, since the length of each intervalis
Furthermore, the conditions f¢«, b) € D1 (I,,,) and(a, b) € Dy(1,,,) are given by

(a,0) € Di(Im) <= im € [f*(a) = L, f*(a) = 1],
(a,b) € Da(Ip) <= im € [f*(b) — L, f*(b) — 1. (52)

12



In order to prove inequality (49), we observe that

D E(1,)5(ab) Cab T 22Dy (1,,)3(ap) €a. T ZDg([m)B(a b) b
Wab (Zf (—a}*(la)_L(M"‘ fr(a) —im —1)+ Zf —f (b) (M + () = im — 1))

a)—1 * a)—1 N .
= 'LUab(2LM+ZZ ,])c “(a)— (f (a)_lm_l)‘FZl 7])( (@) (f (a)—lm—l))
S Wwap (2LM + 2L?)
= L
N L2+ 1) egb;f*(a)f*(b)v (53)
where the last expression is obtained using the facwﬂlafg(a)f*(b) = WM.

Case I:M < d(f*(a), f*(b)) = |f*(a) — f*(b)| < L and hence§? = waM.

ab;f*(a) f*(b)

We will assume, without loss of generality, th&t(a) < f*(b). In this case, the conditions for
(a,b) € E(I,), (a,b) € Di(I,) and(a, b) € D2(I,,) are given by

(a,0) € E(In) <= im € [f*(b) = L, [*(a) = 1],
(a,0) € Di(Im) <= im € [[*(a) = L, f*(b) = L = 1],
(a,b) € Da(Inn) <= im € [f*(a), f*(b) — 1. (54)

Again, in order to prove inequality (49), we observe that
2(Im)3(ab) €ab T 22Dy (1) (ab) €a. T 2Da(Im)>(asb) b
r* a) 1 £(p) — f* frO)=L=1 (ar *(a) —i —1
way (S0 () = £ (@) + SO (M £ (0) — i — 1)
b)—1 » ,
SOl (M + £0) = i~ 1)

Wap (2L + 2M — (f*(b) — f*(a))) (f*(b) — f*(a))
wa L(2M + L)

L2+ 37) 02 e a1 (o) (55)
where the last expression is obtained using the faciﬂmgft*(a)f*(b) = wep M.
Case Ill:d(f*(a), /(b)) = | £*(a) — f*(b)| < M and hence?, . ;- = was| f*(a) = f*(B)].
We will assume, without loss of generality, théit(a) < f*(b). Similar to case Il, the conditions
for (a,b) € E(1,), (a,b) € D1(I,,) and(a, b) € D2(I,,) are given by

(a,b) € E(Im) <= im € [f*(b) = L, f*(a) — 1],
(a,b) € Di(Im) <= im € [f*(a) = L, f*(b) = L = 1],

(a,b) € Dy(I) <= im € [f*(a), f*(b) = 1]. (56)

Once again, we consider

IN N +

2oe(In)a(ab) Cab T 2Dy (In)3(ab) €a T 2Da(Tn)3(ab) G
a1 * b)—L-1 . ,
= wa (200 L 0) = (@) + LT (M £ (@) — i = 1)

SO M+ £ (0) = im — 1))
Wap (2L + 2M = (f7(b) = f*(a))) (f*(b) — f*(a))
wap(2L + 2M)(f*(b) — f*(a))
L(2+3) 02 1 (ayr-5) (57)

IN N +

where the last expression is obtained using the faclﬁmgfp(a)ﬁ(b) = wap(f*(b) — f*(a)).

Substituting inequalities (53), (55) and (57) in expresgil) and dividing both sides bk for all
(a,b) € &€, we obtain inequality (49). This proves the Lemma. |}
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Theorem 1: For the truncated linear metric, our algorithm obtains atiplidative bound of + /2
usingL = v2M.

The proof of the above theorem follows by substituting: /2 in inequality (49) and simplifying
inequality (48). Note that this bound is better than thogaiolkd bya-expansion [5] (i.e2M/) and

its generalization [9] (i.e4). In fact, the bound of [9] can be obtained directly from thmee

analysis by using the non-optimal assignmentef M.

Similarly, using Theorem 4 of [6], we obtain the following Hiplicative bound for the truncated
guadratic semi-metric.

Theorem 2: For the truncated quadratic semi-metric, our algorithnaimista multiplicative bound
of O(vV M) usingL = v M.

Note that bothn-expansion and the approach of Gupta and Tardos provideunmdlsdor the above
case. The primal-dual method of [18] obtains a boun#@l/af which is clearly inferior to our guar-
antees.

4 Experiments

We tested our approach using both synthetic and standdrdatsa Below, we describe the experi-
mental setup and the results obtained in detail.

4.1 Synthetic Data

Experimental Setup We used100 random fields for both the truncated linear and truncated
guadratic models. The variablesand neighbourhood relationshpof the random fields described

a 4-connected grid graph of siz@ x 50. Note that 4-connected grid graphs are widely used to
model several problems in Computer Vision [28]. Each vdeiaas allowed to take one a@f) pos-
sible labels, i.el = {ly,l1,- - ,l19}. The parameters of the random field were generated randomly.
Specifically, the unary potentia@;i were sampled uniformly from the interviil, 10] while the
weightsw,,, which determine the pairwise potentials, were samplefrmiy from [0,5]. The
parametefl/ was also chosen randomly while taking care th@t) < M < d(10).

Results Fig. 3 shows the results obtained by our approach and five stihite of the art algorithms:
af-swap,a-expansiongp, TRW-S and the range move algorithm of [29]. We used publicly atéda
code for all previously proposed approaches with the exaepf the range move algorithinAs can

be seen from the figure, the most accurate approach is thedhptbposed in this paper, followed
closely by the range move algorithm. Recall that, unlikeggamove, our algorithm is guaranteed to
provide the same worst case multiplicative bounds as#irelaxation. As expected, both the range
move algorithm and our method are slower thaftswap andx-expansion (since each iteration
computes an St#INCUT on a larger graph). However, they are faster thaw-s, which attempts to
minimize theLP relaxation, andgP. We note here that our implementation does not use any clever
tricks to speed up the max-flow algorithm (such as those degtin [1]) which can potentially
decrease the running time by orders of magnitude.

4.2 Real Data- Stereo Reconstruction

Given twoepipolar rectifiedmagesD; andD,, of the same scene, the problem of stereo reconstruc-
tion is to obtain a correspondence between the pixels oftiagés. This problem can be modelled
using a random field whose variables correspond to pixelsiefimage (sayD,) and take labels
from a set ofdisparitiesl = {0, 1,--- ,h — 1}. A disparity value for a random variable denoting
pixel (z,y) in Dy indicates that its corresponding pixel lies in locati@n+ ¢, y) in the second
image.

For the above random field formulation, the unary potentiaee defined as in [3] and were trun-
cated at 15. As is typically the case, we chose the neighlodrhelationshipt to define a 4-

SWhen usinga-expansion with the truncated quadratic semi-metric, ddjes with negative capacities in
the graph construction were removed, similar to the expantsiin [28].
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Figure 3:Results of the synthetic experimefa) Truncated linear metric(b) Truncated quadratic
semi-metric. The x-axis shows the time taken in seconds;-@kis shows the average Gibbs energy
obtained over all 100 random fields using the six algorithifise lower blue curve is the value of
the dual obtained byrw-s. In both the cases, our method and the range move algoritlowige
the most accurate solution and are faster thi@w-s andBP.

neighbourhood grid graph. The number of disparitiesas set t20. We experimented using the
following truncated convex potentials:

egb,lj =50 mln{|z - .7|7 10}1
62,.; = 50min{ (i — j)2, 100} (58)

The above form of pairwise potentials encourage neighbgunixels to take similar disparity values
which corresponds to our expectations of finding smoothesed in natural images. Truncation of
pairwise potentials is essential to avoid oversmoothisgolaserved in [5, 29]. Note that using
spatially varying weightsu,;, provides better results. However, the main aim of this erpent is

to demonstrate the accuracy and speed of our approach and design the best possible Gibbs
energy. Fig. 4 shows the results obtained using variousittigos when using the truncated linear
metric on a standard stereo pair (Tsukuba). Table 2 protigesalue of the Gibbs energy and the
total time taken by all the approaches for three stereo p&imilar to the synthetic experiments,
the range move algorithm and our method provide the mostratesolutions while taking less
time thanTrRw-s andsp. Our method does marginally better than range move. Howessewould
again like to emphasize that unlike our method the range ratg@ithm provides no theoretical
guarantees about the quality of the solution.

5 Discussion

We have presented anmiNCUT based algorithm for obtaining the approximatep estimate of
discrete random fields with truncated convex pairwise gakn Our method improves the mul-
tiplicative bound for the truncated linear metric compated5, 9] and provides the best known
bound for the truncated quadratic semi-metric. Due to tleeaionly the stmiNCUT problem in
its design, it is faster than previous approaches basedeorpthelaxation. In fact, its speed can
be further improved by a large factor using clever techrsgaiech as those described in [16] (for
convex unary potentials) and/or [1] (for general unary ptigds). Furthermore, it overcomes the
well-known deficiencies of Rw and its variants. Experiments on synthetic and real datbl@nes
demonstrate its effectiveness compared to several stéte aft algorithms.

Our method can easily be extended to handle truncated subaradodels by using the graph
construction of [24] instead of [29]. However, the resugtimultiplicative bounds would start to
depend on the value of the pairwise potentials thereby ngakimanalysis cluttered. For this reason,
we have restricted our discussion to the truncated conveleimo
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(9) (h) (i)

Figure 4: Tsukuba stereo pair(a) First image. (b) Second image.(c) Ground truth disparity
map. (d)-(i) Results obtained using various algorithms: in the aboveeprad3-swap algorithm,
a-expansionTRW-s, BP, the range move algorithm of [29] and our approach.

A slight modification of Theorem 3.7 of [9] also proves thatdfir algorithm is run for
O(h/L)(log Q(f1,D;0) + loge™!) iterations (wheref; is the initial labelling, and > 0), then
the expected value of the Gibbs energy would be at 1f®$tv/2 + €)Q(f*, D; 6) for the truncated

linear metric andO(v'M) + €)Q(f*, D; 8) for the truncated quadratic semi-metric (wheeis
an optimal labelling). In other words, our method providessame guarantees as tirerelaxation
in polynomial time. Although theoretically interestingpet practical implications of this result are
minimal, since in most scenarios we will be able to run ouoetgm for a sufficient number of
iterations so as to end up in the local minimum over all ireés¥,,,. In fact, in all our experiments
we reached the local minimum in less thaiterations.

The analysis in section 3 shows that, for the truncated liaed truncated quadratic models, the
bound achieved by our move making algorithm over intervélany lengthL is equal to that of
rounding theLp relaxation’s optimal solution using the same intervals [Bhis equivalence also
extends to the Potts model (in which casexpansion provides the same bound ag theelaxation
when using the rounding scheme of [12]). A natural questionld be to ask about the relation-
ship between move making algorithms and the rounding schesed in convex relaxations. Note
that despite recent efforts [18] which analyze certain mmaking algorithms in the context of
primal-dual approaches for the> relaxation, not many results are known about their conapecti
with randomize rounding schemes. Although the discussiagection 3 cannot be trivially gener-
alized to all random fields, it offers a first step towards aréwg this question. We believe that
further exploration in this direction would help improvestinderstanding of the nature of thiap
estimation problem, e.g. how to derandomize approachesllmasconvex relaxations. Furthermore,
it would also help design efficient move making algorithmssrfre complex relaxations such as
those described in [20].
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Algorithm Energy-1| Time-1(s)| Energy-2| Time-2(s)
af-swap 645227 28.86 709120 20.04
a-expansion | 634931 9.52 723360 9.78
TRW-S 634720 94.86 651696 226.07
BP 662108 | 170.67 | 2155759 244.71
Range Move | 634720 39.75 651696 80.40
Our Approach| 634720 66.13 651696 80.70
(a)
Algorithm Energy-1| Time-1(s)| Energy-2| Time-2(s)
af-swap 1056109| 35.00 1198029 52.98
a-expansion | 1052860 15.16 1320088| 11.95
TRW-S 1053341| 142.19 | 1057371| 339.02
BP 1117782| 180.65 | 2443796| 368.14
Range Move | 1052762 100.49 | 1057041 168.28
Our Approach| 1052762 129.30 | 1057041 155.98
(b)
Algorithm Energy-1| Time-1(s)| Energy-2| Time-2(s)
af-swap 3678200 18.48 3707268 20.25
a-expansion | 3677950 11.73 3687874 8.79
TRW-S 3677578| 131.65 | 3679563| 332.94
BP 3789486| 272.06 | 5180705| 331.36
Range Move | 3686844| 97.23 3679552 141.78
Our Approach| 3613003 | 120.14 | 3679552 | 191.20

(©)

Table 2:The energy obtained and the time taken by the algorithmsingbeé stereo reconstruction
experiment. Columns 2 and 3 : truncated linear metric. Caladhand 5: truncated quadratic semi-
metric. (a) Tsukuba.(b) Venus.(c) Teddy. The lowest energy obtained in each case is indicated
using bold font.

We thank the reviewers for careful reading of the submitteshuscript and for helpful comments
which improved the clarity of the paper.
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