Sparse Online Learning via Truncated Gradient

John Langford Lihong Li Tong Zhang
Yahoo! Research Department of Computer Science Department of Statistics
jl@yahoo-inc.com Rutgers University Rutgers University
lihong@cs.rutgers.edu tongz@rci.rutgers.edu
Abstract

We propose a general method called truncated gradient to induce sparsity in the
weights of online-learning algorithms with convex loss. This method has several
essential properties. First, the degree of sparsity is continuous—a parameter con-
trols the rate of sparsification from no sparsification to total sparsification. Second,
the approach is theoretically motivated, and an instance of it can be regarded as
an online counterpart of the popular L;-regularization method in the batch set-
ting. We prove small rates of sparsification result in only small additional regret
with respect to typical online-learning guarantees. Finally, the approach works
well empirically. We apply it to several datasets and find for datasets with large
numbers of features, substantial sparsity is discoverable.

1 Introduction

We are concerned with machine learning over large datasets. As an example, the largest dataset
we use in this paper has over 107 sparse examples and 10° features using about 10! bytes. In this
setting, many common approaches fail, simply because they cannot load the dataset into memory
or they are not sufficiently efficient. There are roughly two approaches which can work: one is
to parallelize a batch learning algorithm over many machines (e.g., [3]), the other is to stream the
examples to an online-learning algorithm (e.g., [2, 6]). This paper focuses on the second approach.

Typical online-learning algorithms have at least one weight for every feature, which is too expensive
in some applications for a couple reasons. The first is space constraints: if the state of the online-
learning algorithm overflows RAM it can not efficiently run. A similar problem occurs if the state
overflows the L2 cache. The second is test-time constraints: reducing the number of features can
significantly reduce the computational time to evaluate a new sample.

This paper addresses the problem of inducing sparsity in learned weights while using an online-
learning algorithm. Natural solutions do not work for our problem. For example, either simply
adding L, regularization to the gradient of an online weight update or simply rounding small weights
to zero are problematic. However, these two ideas are closely related to the algorithm we propose
and more detailed discussions are found in section 3. A third solution is black-box wrapper ap-
proaches which eliminate features and test the impact of the elimination. These approaches typically
run an algorithm many times which is particularly undesirable with large datasets.

Similar problems have been considered in various settings before. The Lasso algorithm [12] is
commonly used to achieve L regularization for linear regression. This algorithm does not work
automatically in an online fashion. There are two formulations of L; regularization. Consider a
loss function L(w, z;) which is convex in w, where z; = (x;,y;) is an input—output pair. One is the
convex-constraint formulation

W= argminZL(w,zi) subject to |Jwl|1 < s, @)
i=1

where s is a tunable parameter. The other is soft-regularization with a tunable parameter g:

n

W = arg minZL(w, zi) + gllwl1. 2)
i=1

w

With appropriately chosen g, the two formulations are equivalent. The convex-constraint formu-
lation has a simple online version using the projection idea in [14]. It requires the projection of
weight w into an L ball at every online step. This operation is difficult to implement efficiently
for large-scale data with many features even if all features are sparse, although important progress
was made recently so the complexity is logarithmic in the number of features [5]. In contrast, the
soft-regularization formulation (2) is efficient for a batch setting[8] so we pursue it here in an online
setting where it has complexity independent of the number of features. In addition to the L; regu-
larization formulation (2), the family of online-learning algorithms we consider also includes some
non-convex sparsification techniques.

The Forgetron [4] is an online-learning algorithm that manages memory use. It operates by decay-
ing the weights on previous examples and then rounding these weights to zero when they become
small. The Forgetron is stated for kernelized online algorithms, while we are concerned with the
simple linear setting. When applied to a linear kernel, the Forgetron is not computationally or space
competitive with approaches operating directly on feature weights.

At a high level, our approach is weight decay to a default value. This simple method enjoys strong
performance guarantees (section 3). For instance, the algorithm never performs much worse than a
standard online-learning algorithm, and the additional loss due to sparsification is controlled contin-
uously by a single real-valued parameter. The theory gives a family of algorithms with convex loss
functions for inducing sparsity—one per online-learning algorithm. We instantiate this for square
loss in section 4 and show how this algorithm can be implemented efficiently in large-scale prob-
lems with sparse features. For such problems, truncated gradient enjoys the following properties:
(1) It is computationally efficient: the number of operations per online step is linear in the number
of nonzero features, and independent of the total number of features; (ii) It is memory efficient: it
maintains a list of active features, and can insert (when the corresponding weight becomes nonzero)
and delete (when the corresponding weight becomes zero) features dynamically.

Theoretical results stating how much sparsity is achieved using this method generally require addi-
tional assumptions which may or may not be met in practice. Consequently, we rely on experiments
in section 5 to show truncated gradient achieves good sparsity in practice. We compare truncated
gradient to a few others on small datasets, including the Lasso, online rounding of coefficients to
zero, and L -regularized subgradient descent. Details of these algorithms are given in section 3.

2 Online Learning with Stochastic Gradient Descent

We are interested in the standard sequential prediction problems where for¢ =1,2,.. .:
1. An unlabeled example x; arrives.
2. We make a prediction §; based on the current weights w; = [w}, ..., wf] € R9.

7
3. We observe y;, let z; = (z;,y;), and incur some known loss L(w;, z;) convex in w;.
4. We update weights according to some rule: w; 1 «— f(w;).

We want an update rule f allows us to bound the sum of losses, Zle L(w;, 2;), as well as achieving
sparsity. For this purpose, we start with the standard stochastic gradient descent (SGD) rule, which
is of the form:

f(wz) = w; — leL(wz‘, Zi)7 3)

where V1 L(a, b) is a subgradient of L(a, b) with respect to the first variable a. The parameter 7 > 0
is often referred to as the learning rate. In the analysis, we only consider constant learning rate for
simplicity. In theory, it might be desirable to have a decaying learning rate n; which becomes smaller
when ¢ increases to get the so-called no-regret bound without knowing 7" in advance. However, if
T is known in advance, one can select a constant 7 accordingly so the regret vanishes as 7' — oo.
Since the focus of the present paper is on weight sparsity, rather than choosing the learning rate, we
use a constant learning rate in the analysis because it leads to simpler bounds.

The above method has been widely used in online learning (e.g., [2, 6]). Moreover, it is argued
to be efficient even for solving batch problems where we repeatedly run the online algorithm over
training data multiple times. For example, the idea has been successfully applied to solve large-scale
standard SVM formulations [10, 13]. In the scenario outlined in the introduction, online-learning
methods are more suitable than some traditional batch learning methods. However, the learning rule
(3) itself does not achieve sparsity in the weights, which we address in this paper. Note that variants
of SGD exist in the literature, such as exponentiated gradient descent (EG) [6]. Since our focus is
sparsity, not SGD vs. EG, we shall only consider modifications of (3) for simplicity.

3 Sparse Online Learning

In this section, we first examine three methods for achieving sparsity in online learning, including
a novel algorithm called truncated gradient. As we shall see, all these ideas are closely related.
Then, we provide theoretical justifications for this algorithm, including a general regret bound and
a fundamental connection to the Lasso.

3.1 Simple Coefficient Rounding

In order to achieve sparsity, the most natural method is to round small coefficients (whose magni-
tudes are below a threshold # > 0) to zero after every K online steps. That is, if i/K is not an
integer, we use the standard SGD rule (3); if i/ K is an integer, we modify the rule as:

f(w;) = To(w; —nViL(w;, z;),), “4)

where: § > 0 is a threshold, Ty (v,) = [To(v1,0), . .., To(vg, 0)] for vector v = [vy,...,v4] € RY,
To(vj,0) = v;I(Jvj| <), and I(-) is the set-indicator function. In other words, we first perform a
standard stochastic gradient descent, and then round the coefficients to zero. The effect is to remove
nonzero and small weights. In general, we should not take K = 1, especially when 7 is small, since
in each step w; is modified by only a small amount. If a coefficient is zero, it remains small after
one online update, and the rounding operation pulls it back to zero. Consequently, rounding can be
done only after every K steps (with a reasonably large K); in this case, nonzero coefficients have
sufficient time to go above the threshold 6. However, if K is too large, then in the training stage, we
must keep many more nonzero features in the intermediate steps before they are rounded to zero. In
the extreme case, we may simply round the coefficients in the end, which does not solve the storage
problem in the training phase at all. The sensitivity in choosing appropriate K is a main drawback of
this method; another drawback is the lack of theoretical guarantee for its online performance. These
issues motivate us to consider more principled solutions.

3.2 L,;-Regularized Subgradient

In the experiments, we also combined rounding-in-the-end-of-training with a simple online subgra-
dient method for L; regularization with a regularization parameter g > 0:

f(w;) = wi —nViL(w;, 2;) — ng sgn(w;), (&)
where for a vector v = [v1,...,vq), sgn(v) = [sgn(v1),...,sgn(vq)], and sgn(v;) = 1if v; > 0,
sgn(v;) = —1if v; < 0, and sgn(v;) = 0if v; = 0. In the experiments, the online method (5)

with rounding in the end is used as a simple baseline. Notice this method does not produce sparse
weights online simply because only in very rare cases do two floats add up to 0. Therefore, it is not
feasible in large-scale problems for which we cannot keep all features in memory.

3.3 Truncated Gradient

In order to obtain an online version of the simple rounding rule in (4), we observe that direct round-
ing to zero is too aggressive. A less aggressive version is to shrink the coefficient to zero by a
smaller amount. We call this idea truncated gradient, where the amount of shrinkage is controlled
by a gravity parameter g; > 0:

flw;) =Ty (w; —nV1L(w;, 2),ng:,0), 6)

where for a vector v = [v1,...,vq] € R? and a scalar ¢ > 0, Ti(v,a,0) =
[T1(v1,,8),...,T1(vq, @, 0)], with

max(0,v; —a) ifv; €[0,6]
Ti(vj,,0) = ¢ min(0,v; +) ifv; € [—6,0] .
v otherwise

Again, the truncation can be performed every K online steps. That is, if ¢/ K is not an integer, we
let g; = 0; if i/K is an integer, we let g; = Kg for a gravity parameter g > 0. The reason for
doing so (instead of a constant g) is that we can perform a more aggressive truncation with gravity
parameter K g after each K steps. This can potentially lead to better sparsity. We also note that when
nKg > 0, truncate gradient coincides with (4). But in practice, as is also verified by the theory, one
should adopt a small g; hence, the new learning rule (6) is expected to differ from (4).

In general, the larger the parameters g and 6 are, the more sparsity is expected. Due to the extra
truncation 77, this method can lead to sparse solutions, which is confirmed empirically in section 5.

A special case, which we use in the experiment, is to let g = 6 in (6). In this case, we can use only
one parameter g to control sparsity. Since nKg < 6 when nK is small, the truncation operation
is less aggressive than the rounding in (4). At first sight, the procedure appears to be an ad-hoc
way to fix (4). However, we can establish a regret bound (in the next subsection) for this method,
showing it is theoretically sound. Therefore, it can be regarded as a principled variant of rounding.
Another important special case of (6) is setting § = oo, in which all weight components shrink in
every online step. The method is a modification of the L;-regularized subgradient descent rule (5).
The parameter g; > 0 controls the sparsity achieved with the algorithm, and setting g; = 0 gives
exactly the standard SGD rule (3). As we show in section 3.5, this special case of truncated gradient
can be regarded as an online counterpart of L, regularization since it approximately solves an L
regularization problem in the limit of — 0. We also show the prediction performance of trun-
cated gradient, measured by total loss, is comparable to standard stochastic gradient descent while
introducing sparse weight vectors.

3.4 Regret Analysis

Throughout the paper, we use || - ||; for 1-norm, and || - || for 2-norm. For reference, we make the
following assumption regarding the loss function:

Assumption 3.1 We assume L(w, z) is convex in w, and there exist non-negative constants A and
B such that (V1 L(w, 2))? < AL(w, z) + B forall w € R% and » € R,

For linear prediction problems, we have a general loss function of the form L(w, z) = ¢(w™z,y).
The following are some common loss functions ¢(-, -) with corresponding choices of parameters A
and B (which are not unique), under the assumption sup,, ||z|| < C. All of them can be used for
binary classification where y € £1, but the last one is more often used in regression where y € R:
Logistic: ¢(p,y) = In(1 + exp(—py)), with A = 0 and B = C?; SVM (hinge loss): ¢(p,y) =
max(0,1 — py), with A = 0 and B = C?; Least squares (square loss): ¢(p,y) = (p — y)?, with
A=4C?and B = 0.

The main result is Theorem 3.1 which is parameterized by A and B. The proof will be provided in

a longer paper.

Theorem 3.1 (Sparse Online Regret) Consider sparse online update rule (6) with wy = [0, ..., 0]
and n > 0. If Assumption 3.1 holds, then for all v € R% we have

T
1—-0.5A4n Gi
—7 ; {L(wiazi) + m”wi+l T(wit1 < 0)|hh
g ol 1S
< 3B+ T tT > (L@, 2) + gillw - T(wiga < 0)l4],

i=1

where ||v-I(|v'| < 0|1 = ijl [o;[L(|v}| < 0) forvectors v = [v1, ... ,va] and v" = [vy, ..., vg].

The theorem is stated with a constant learning rate n. As mentioned earlier, it is possible to obtain
a result with variable learning rate where n = n; decays as ¢ increases. Although this may lead to a
no-regret bound without knowing 7" in advance, it introduces extra complexity to the presentation of
the main idea. Since the focus is on sparsity rather than optimizing learning rate, we do not include
such a result for clarity. If 7" is known in advance, then in the above bound, one can simply take

n = O(1/v/T) and the regret is of order O(1/v/T).

In the above theorem, the right-hand side involves a term g;||@ - [(w;+1 < 6)]||; that depends on
w;4+1 which is not easily estimated. To remove this dependency, a trivial upper bound of § = oo
can be used, leading to L, penalty g;||w|;. In the general case of §# < oo, we cannot remove the
w;+1 dependency because the effective regularization condition (as shown on the left-hand side)
is the non-convex penalty g;||w - I(Jw| < 6)]|;. Solving such a non-convex formulation is hard
both in the online and batch settings. In general, we only know how to efficiently discover a local
minimum which is difficult to characterize. Without a good characterization of the local minimum,
it is not possible for us to replace g;||w - I(w;+1 < 60)||1 on the right-hand side by g¢;||w - I(w <
0)|l1 because such a formulation implies we could efficiently solve a non-convex problem with a
simple online update rule. Still, when § < oo, one naturally expects the right-hand side penalty
gill@w - I(w;+1 < 0)]|1 is much smaller than the corresponding L penalty g; ||| 1, especially when
w; has many components close to 0. Therefore the situation with § < oo can potentially yield better
performance on some data.

Theorem 3.1 also implies a tradeoff between sparsity and regret performance. We may simply
consider the case where g; = g is a constant. When ¢ is small, we have less sparsity but the regret
term g||w - I(w;41 < 0)]]1 < g||wl||1 on the right-hand side is also small. When g is large, we are
able to achieve more sparsity but the regret g||@-I(w;+1 < 6)]|; on the right-hand side also becomes
large. Such a tradeoff between sparsity and prediction accuracy is empirically studied in section 5,
where we achieve significant sparsity with only a small g (and thus small decrease of performance).

Now consider the case § = oo and g; = g. When T' — o0, if we let n — 0 and nI" — oo, then
T T

1 1

T ;[L(wi, @) +gllwilli] < inf o Z; L(w, zi) + 2g|[@|l1 | + o(1).
follows from Theorem 3.1. In other words, if we let L'(w,z) = L(w,z) + g|lw||1 be the L-
regularized loss, then the L;-regularized regret is small when — 0 and " — oo. This implies
truncated gradient can be regarded as the online counterpart of L-regularization methods. In the
stochastic setting where the examples are drawn iid from some underlying distribution, the sparse
online gradient method proposed in this paper solves the L; regularization problem.

3.5 Stochastic Setting

SGD-based online-learning methods can be used to solve large-scale batch optimization problems.
In this setting, we can go through training examples one-by-one in an online fashion, and repeat
multiple times over the training data. To simplify the analysis, instead of assuming we go through
example one by one, we assume each additional example is drawn from the training data randomly
with equal probability. This corresponds to the standard stochastic optimization setting, in which
observed samples are iid from some underlying distributions. The following result is a simple conse-
quence of Theorem 3.1. For simplicity, we only consider the case with § = oo and constant gravity
g; = g. The expectation E is taken over sequences of indices i1, . .., ¢p.

Theorem 3.2 (Stochastic Setting) Consider a set of training data z; = (x;,y;) for 1 <i < n. Let

1 n
Rw,g) = — " Liw, 2) + gllwl;
i=1
be the L1-regularized loss over training data. Let w1 = w1 = 0, and define recursively for t > 1:

w1 = T(wy —nVi(wy, 2i,), 9n), W1 = Wy + (g1 — W) /(T + 1),

where each iy is drawn from {1,...,n} uniformly at random. If Assumption 3.1 holds, then for all
T and w € R%:
T
A g 1-0.54n g 4, ol _
—0. — L)| <E|[—0 G —J <! .
E | (1 - 0.5An)R(dr, T O.5An)} <E T R(w, 1 _0.5147}) < 2B+ T +R(w, g)

i=1

Observe that if we let n — 0 and T — oo, the bound in Theorem 3.2 becomes E [R(wr, g)] <
E |1 Zthl R(wy, g)} <infgz R(w, g) +o(1). In other words, on average Wy approximately solves

n

the batch L;-regularization problem inf,, [= > | L(w, ;) + g|lw|l1] when T is large. If we
choose a random stopping time 7, then the above inequalities say that on average wr also solves
this L-regularization problem approximately. Thus, we use the last solution wy instead of the ag-
gregated solution wr in experiments. Since L, regularization is often used to achieve sparsity in the
batch learning setting, the connection of truncated gradient to L; regularization can be regarded as
an alternative justification for the sparsity ability of this algorithm.

4 Efficient Implementation of Truncated Gradient for Square Loss

The truncated descent update rule (6) can be applied to least-squares regression using square loss,
leading to f(w;) = Ty (w; + 2n(y; — Ui)xi,ngi,), where the prediction is given by ; = Zj wix].
We altered an efficient SGD implementation, Vowpal Wabbit [7], for least-squares regression
according to truncated gradient. The program operates in an entirely online fashion. Features are
hashed instead of being stored explicitly, and weights can be easily inserted into or deleted from the
table dynamically. So the memory footprint is essentially just the number of nonzero weights, even
when the total numbers of data and features are astronomically large.

In many online-learning situations such as web applications, only a small subset of the features
have nonzero values for any example z. It is thus desirable to deal with sparsity only in this small
subset rather than in all features, while simultaneously inducing sparsity on all feature weights. The
approach we take is to store a time-stamp 7; for each feature j. The time-stamp is initialized to the
index of the example where feature j becomes nonzero for the first time. During online learning, at
each step 7, we only go through the nonzero features j of example 4, and calculate the un-performed
shrinkage of w’ between 7; and the current time i. These weights are then updated, and their time
stamps are reset to 7. This lazy-update idea of delaying the shrinkage calculation until needed is
the key to efficient implementation of truncated gradient. The implementation satisfies efficiency
requirements outlined at the end of the introduction section. A similar time-stamp trick can be
applied to the other two algorithms given in section 3.

S Empirical Results

We applied the algorithm, with the efficiently implemented sparsify option, as described in the
previous section, to a selection of datasets, including eleven datasets from the UCI repository [1],
the much larger dataset rcvl [9], and a private large-scale dataset Big_Ads related to ad interest
prediction. While UCI datasets are useful for benchmark purposes, rcvl and Big_Ads are more
interesting since they embody real-world datasets with large numbers of features, many of which
are less informative for making predictions than others. The UCI datasets we used do not have
many features, and it seems a large fraction of these features are useful for making predictions. For
comparison purposes and to better demonstrate the behavior of our algorithm, we also added 1000
random binary features to those datasets. Each feature has value 1 with prob. 0.05 and 0 otherwise.

In the first set of experiments, we are interested in how much reduction in the number of features is
possible without affecting learning performance significantly; specifically, we require the accuracy
be reduced by no more than 1% for classification tasks, and the total square loss be increased by no
more than 1% for regression tasks. As common practice, we allowed the algorithm to run on the
training data set for multiple passes with decaying learning rate. For each dataset, we performed 10-
fold cross validation over the training set to identify the best set of parameters, including the learning
rate 7, the gravity g, number of passes of the training set, and the decay of learning rate across these
passes. This set of parameters was then used on the whole training set. Finally, the learned classi-
fier/regressor was evaluated on the test set. We fixed X' = 1 and § = oo in this set of experiments.
The effects of K and 6 are included in an extended version of this paper. Figure 1 shows the fraction
of reduced features after sparsification is applied to each dataset. For UCI datasets with randomly
added features, truncated gradient was able to reduce the number of features by a fraction of more
than 90%, except for the ad dataset in which only 71% reduction was observed. This less satisfying
result might be improved by a more extensive parameter search in cross validation. However, if

Base data

Base data —

1000 extra Fraction of Features Left 1000 extra Ratio of AUC
1 T T T T T T T T T 12 T T T T T T T T T
L i 1k -
= 0.8 o5
- 06 - o]
S 5 06 -
g o4r T 04 f g
w 0.2 | | B 02k 4
0 1 L 0
el 5 o Q< g E 0O O O O+~ u0 © 5 Q < IS e [o (o] —
TegE88ETEEN S g8 g gEggs
S 2 o2 o I | s o = 9 = =2
O X ®©@ £ o X ®© <
< E [72] m E w
Dataset Dataset

Figure 1: Left: the amount of features left after sparsification for each dataset without 1% perfor-
mance loss. Right: the ratio of AUC with and without sparsification.

we tolerated 1.3% decrease in accuracy (instead of 1%) during cross validation, truncated gradient
was able to achieve 91.4% reduction, indicating a large reduction is still possible at the tiny addi-
tional accuracy loss of 0.3%. Even for the original UCI datasets without artificially added features,
some of the less useful features were removed while the same level of performance was maintained.
For classification tasks, we also studied how truncated gradient affects AUC (Area Under the ROC
Curve), a standard metric for classification. We use AUC here because it is insensitive to threshold,
unlike accuracy. Using the same sets of parameters from 10-fold cross validation described above,
we found the criterion was not affected significantly by sparsification and in some cases, it was ac-
tually improved, due to removal of some irrelevant features. The ratios of the AUC with and without
sparsification for all classification tasks are plotted in Figure 1. Often these ratios are above 98%.

The previous results do not exercise the full power of the approach presented here because they are
applied to datasets where the standard Lasso is computationally viable. We have also applied this
approach to a large non-public dataset Big_Ads where the goal is predicting which of two ads was
clicked on given context information (the content of ads and query information). Here, accepting a
0.9% increase in classification error allows us to reduce the number of features from about 3 x 10?
to about 24 x 105—a factor of 125 decrease in the number of features.

The next set of experiments compares truncated gradient to other algorithms regarding their abilities
to tradeoff feature sparsification and performance. Again, we focus on the AUC metric in UCI
classification tasks. The algorithms for comparison include: (i) the truncated gradient algorithm with
K =10 and 6 = o0; (ii) the truncated gradient algorithm with K = 10 and 6 = g; (iii) the rounding
algorithm with K = 10; (iv) the L;-regularized subgradient algorithm with K = 10; and (v) the
Lasso [12] for batch L regularization (a publicly available implementation [11] was used). We have
chosen K = 10 since it worked better than K = 1, and this choice was especially important for the
coefficient rounding algorithm. All unspecified parameters were identified using cross validation.
Note that we do not attempt to compare these algorithms on rcv1 and Big_Ads simply because their
sizes are too large for the Lasso and subgradient descent. Figure 2 gives the results on datasets
ad and spambase. Results on other datasets were qualitatively similar. On all datasets, truncated
gradient (with 8 = o0) is consistently competitive with the other online algorithms and significantly
outperformed them in some problems, implying truncated gradient is generally effective. Moreover,
truncated gradient with # = ¢ behaves similarly to rounding (and sometimes better). This was
expected as truncated gradient with # = g can be regarded as a principled variant of rounding with
valid theoretical justification. It is also interesting to observe the qualitative behavior of truncated
gradient was often similar to LASSO, especially when very sparse weight vectors were allowed
(the left sides in the graphs). This is consistent with theorem 3.2 showing the relation between
these two algorithms. However, LASSO usually performed worse when the allowed number of
nonzero weights was large (the right side of the graphs). In this case, LASSO seemed to overfit
while truncated gradient was more robust to overfitting. The robustness of online learning is often
attributed to early stopping, which has been extensively studied (e.g., in [13]).

Finally, it is worth emphasizing that these comparison experiments shed some light on the relative
strengths of these algorithms in terms of feature sparsification, without considering which one can
be efficiently implemented. For large datasets with sparse features, only truncated gradient and the
ad hoc coefficient rounding algorithm are applicable.

ad spambase

< 0.6 —e—Trunc. Grad. (B=c0) —e—Trunc. Grad. (B=c0)
0.5 —+Trunc. Grad. (6=g)] —+Trunc. Grad. (6=g)
+ Rounding + Rounding
0.4 Sub-gradient 0.4r Sub-gradient
03 ‘ - [asso 03 ‘ - Lasso
10° 10' 10° 10° 10° 10’ 10° 10’
Number of Features Number of Features

Figure 2: Comparison of the five algorithms in two sample UCI datasets.

6 Conclusion

This paper covers the first efficient sparsification technique for large-scale online learning with
strong theoretical guarantees. The algorithm, truncated gradient, is the natural extension of Lasso-
style regression to the online-learning setting. Theorem 3.1 proves the technique is sound: it never
harms performance much compared to standard stochastic gradient descent in adversarial situations.
Furthermore, we show the asymptotic solution of one instance of the algorithm is essentially equiv-
alent to Lasso regression, thus justifying the algorithm’s ability to produce sparse weight vectors
when the number of features is intractably large. The theorem is verified experimentally in a num-
ber of problems. In some cases, especially for problems with many irrelevant features, this approach
achieves a one or two orders of magnitude reduction in the number of features.

References

(1]
(2]

(3]

(4]

(3]

(6]

(7]
(8]

(9]

(10]

(11]

[12]

(13]

(14]

A. Asuncion and D.J. Newman. UCI machine learning repository, 2007. UC Irvine.

N. Cesa-Bianchi, PM. Long, and M. Warmuth. Worst-case quadratic loss bounds for prediction using
linear functions and gradient descent. IEEE Transactions on Neural Networks, 7(3):604—-619, 1996.

C.-T. Chu, S.K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A.Y. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. In Advances in Neural Information Processing Systems 20, pages 281-288, 2008.

0. Dekel, S. Shalev-Schwartz, and Y. Singer. The Forgetron: A kernel-based perceptron on a fixed budget.
In Advances in Neural Information Processing Systems 18, pages 259-266, 2006.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the ¢;-ball for learning
in high dimensions. In Proceedings of ICML-08, pages 272-279, 2008.

J. Kivinen and M.K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 132(1):1-63, 1997.

J. Langford, L. Li, and A.L. Strehl. Vowpal Wabbit (fast online learning), 2007. http://hunch.net/~vw/.

Honglak Lee, Alexis Batle, Rajat Raina, and Andrew Y. Ng. Efficient sparse coding algorithms. In
Advances in Neural Information Processing Systems 19 (NIPS-07), 2007.

D.D. Lewis, Y. Yang, T.G. Rose, and F. Li. RCV1: A new benchmark collection for text categorization
research. Journal of Machine Learning Research, 5:361-397, 2004.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estimated sub-GrAdient SOlver for SVM.
In Proceedings of ICML-07, pages 807-814, 2007.

K. Sjostrand. Matlab implementation of LASSO, LARS, the elastic net and SPCA, June 2005. Version
2.0, http://www2.imm.dtu.dk/pubdb/p.php?3897.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society,
B., 58(1):267-288, 1996.

T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In
Proceedings of ICML-04, pages 919-926, 2004.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings
of ICML-03, pages 928-936, 2003.

