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Abstract

EEG connectivity measures could provide a new type of feature space for inferring
a subject’s intention in Brain-Computer Interfaces (BCIs). However, very little is
known on EEG connectivity patterns for BCIs. In this study, EEG connectivity
during motor imagery (MI) of the left and right is investigated in a broad frequency
range across the whole scalp by combining Beamforming with Transfer Entropy
and taking into account possible volume conduction effects. Observed connec-
tivity patterns indicate that modulation intentionally induced by MI is strongest
in theγ-band, i.e., above 35 Hz. Furthermore, modulation between MI and rest
is found to be more pronounced than between MI of different hands. This is in
contrast to results on MI obtained with bandpower features, and might provide an
explanation for the so far only moderate success of connectivity features in BCIs.
It is concluded that future studies on connectivity based BCIs should focus on
high frequency bands and consider experimental paradigms that maximally vary
cognitive demands between conditions.

1 Introduction

Brain-Computer Interfaces (BCIs) are devices that enable a subject to communicate without uti-
lizing the peripheral nervous system, i.e., without any overt movement requiring volitional motor
control. The primary goal of research on BCIs is to enable basic communication for subjects unable
to communicate by normal means due to neuro-degenerative diseases such as amyotrophic lateral
sclerosis (ALS). In non-invasive BCIs, this is usually approached by measuring the electric field of
the brain by EEG, and detecting changes intentionally induced by the subject (cf. [1] for a general
introduction to BCIs). The most commonly used experimental paradigm in this context is motor
imagery (MI) [2]. In MI subjects are asked to haptically imagine movements of certain limbs, e.g.,
the left or the right hand. MI is known to be accompanied by a decrease in bandpower (usually most
prominent in theµ-band, i.e., roughly at 8-13 Hz) in that part of the motor cortex representing the
specific limb [3]. These bandpower changes, termed event related (de-)synchronization (ERD/ERS),
can be detected and subsequently used for inferring the subject’s intention. This approach to BCIs
has been demonstrated to be very effective in healthy subjects, with only little subject training time
required to achieve classification accuracies close to 100% in two-class paradigms [4–6]. Further-
more, satisfactory classification results have been reported with subjects in early to middle stages
of ALS [7]. However, all subjects diagnosed with ALS and capable of operating a BCI still had
residual motor control that enabled them to communicate without the use of a BCI. Until now, no
communication has been established with a completely locked-in subject, i.e., a subject without any
residual motor control. Establishing communication with a completely locked-in subject arguably
constitutes the most important challenge in research on BCIs.
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Unfortunately, reasons for the failure of establishing communication with completely locked-in sub-
jects remain unknown. While cognitive deficits in completely locked-in patients can at present not
be ruled out as the cause of this failure, another possible explanation is abnormal brain activity ob-
served in patients in late stages of ALS [8]. Our own observations indicate that intentionally induced
bandpower changes in the electric field of the brain might be reduced in subjects in late stages of
ALS. To explore the plausibility of this explanation for the failure of current BCIs in completely
locked-in subjects, it is necessary to devise feature extraction algorithms that do not rely on mea-
sures of bandpower. In this context, one promising approach is to employ connectivity measures
between different brain regions. It is well known from fMRI-studies that brain activity during MI is
not confined to primary motor areas, but rather includes a distributed network including pre-motor,
parietal and frontal regions of the brain [9]. Furthermore, synchronization between different brain
regions is known to be an essential feature of cognitive processing in general [10]. Subsequently, it
can be expected that different cognitive tasks, such as MI of different limbs, are associated with dif-
ferent connectivity patterns between brain regions. These connectivity patterns should be detectable
from EEG recordings, and thus offer a new type of feature space for inferring a subject’s intention.
Since measures of connectivity are, at least in principle, independent of bandpower changes, this
might offer a new approach to establishing communication with completely locked-in subjects.

In recent years, several measures of connectivity have been developed for analyzing EEG recordings
(cf. [11] for a good introduction and a comparison of several algorithms). However, very few studies
exist that analyze connectivity patterns as revealed by EEG during MI [12, 13]. Furthermore, these
studies focus on differences in connectivity patterns between MI and motor execution, which is not
of primary interest for research on BCIs. In the context of non-invasive BCIs, connectivity measures
have been most notably explored in [14] and [15]. However, these studies only consider frequency
bands and small subsets of electrodes known to be relevant for bandpower features, and do not take
into account possible volume conduction effects. This might lead to misinterpreting bandpower
changes as changes in connectivity. Consequently, a better understanding of connectivity patterns
during MI of different limbs as measured by EEG is required to guide the design of new feature
extraction algorithms for BCIs. Specifically, it is important to properly address possible volume
conduction effects, not confine the analysis to a small subset of electrodes, and consider a broad
range of frequency bands.

In this work, these issues are addressed by combining connectivity analysis during MI of the left
and right hand in four healthy subjects with Beamforming methods [6]. Since it is well known that
MI includes primary motor cortex [3], this area is chosen as the starting point of the connectivity
analysis. Spatial filters are designed that selectively extract those components of the EEG originating
in the left and right motor cortex. Then, the concept of Transfer Entropy [16] is used to estimate
class-conditional ’information flow’ from all 128 employed recording sites into the left and right
motor cortex in frequency bands ranging from 5 - 55 Hz. In this way, spatial topographies are
obtained for each frequency band that depict by how much each area of the brain is influencing the
left/right motor cortex during MI of the left/right hand. Interestingly, the most pronounced changes
in connectivity patterns are not observed in MI of the left vs. the right hand, but rather in rest vs. MI
of either hand. Furthermore, these pattern changes are most pronounced in frequency bands not
usually associated with MI. i.e., in theγ-band above 35 Hz. These results suggest that in order
to fully exploit the capabilities of connectivity measures for BCIs, and establish communication
with completely locked-in subjects, it might be advisable to considerγ-band oscillations and adapt
experimental paradigms as to maximally vary cognitive demands between conditions.

2 Methods

2.1 Symmetric vs. Asymmetric Connectivity Analysis

In analyzing interrelations between time-series data it is important to distinguish symmetric from
asymmetric measures. Consider Fig. 1, depicting two graphs of three random processess1 to s3,
representing three EEG sources. The goal of symmetric connectivity analysis (Fig. 1.a) is to esti-
mate some instantaneous measure of similarity between random processes, i.e., assigning weights
to the undirected edges between the nodes of the graph in Fig. 1.a. Amplitude coupling and phase
synchronization fall into this category, which are the measures employed in [14] and [15] for feature
extraction in BCIs. However, interrelations between EEG sources originating in different regions of

2



a)

s1[t] s2[t] s3[t]

s1[t + 1] s2[t + 1] s3[t + 1]

b)

s1[t] s2[t] s3[t]

s1[t + 1] s2[t + 1] s3[t + 1]

Figure 1: Illustration of symmetric- vs. asymmetric connectivity analysis for three EEG sources
within the brain.

the brain can be expected to be asymmetric, with certain brain regions exerting stronger influence on
other regions than vice versa. For this reason, asymmetric connectivity measures potentially provide
more information on cognitive processes than symmetric measures.

Considering asymmetric relations between random processes requires a definition of how the influ-
ence of one process on another process is to be measured, i.e., a quantitative definition of causal
influence. The commonly adopted definition of causality in time-series analysis is thatsi causes
sj if observingsi helps in predicting future observations ofsj , i.e., reduces the prediction error of
sj . This implies that cause precedes effect, i.e., that the graph in Fig. 1.b may only contain directed
arrows pointing forward in time. Note that there is some ambiguity in this definition of causality,
since it does not specify a metric for reduction of the prediction error ofsj due to observingsi. In
Granger causality (cf. [11]), reduction of the variance of the prediction error is chosen as a metric,
essentially limiting Granger causality to linear systems. It should be noted, however, that any other
metric is equally valid. Finally, note that for reasons of simplicity the graph in Fig. 1.b only contains
directed edges from nodes at timet to nodes at timet + 1. In general, directed arrows from nodes at
timest, . . . , t−k to nodes at timet+1 may be considered, withk the order of the random processes
generatings[t + 1].

To assess Granger causality between bivariate time-series data a linear autoregressive model is fit to
the data, which is then used to compute a 2x2 transfer matrix in the frequency domain (cf. [11]). The
off-diagonal elements of the transfer matrix then provide a measure of the asymmetric interaction
between the observed time-series. Extensions of Granger causality to multivariate time-series data,
termed directed transfer function (DTF) and partial directed coherence (PDC), have been developed
(cf. [11] and the references therein). However, in this work a related but different measure for asym-
metric interrelations between time-series is utilized. The concept of Transfer Entropy (TE) [16] de-
fines the causal influence ofsi onsj as the reduction in entropy ofsj obtained by observingsi. More
precisely, letsi andsj denote two random processes, and lets

k
i/j [t] :=

(

si/j [t], . . . , si/j [t − k]
)

.
TE is then defined as

Tk (si[t] → sj [t + 1]) := H
(

sj [t + 1]|sk
j [t]

)

− H
(

sj [t + 1]|sk
j [t], sk

i [t]
)

, (1)

with k the order of the random processes andH(·) the Shannon entropy. TE can thus be understood
as the reduction in uncertainty about the random processsj at timet + 1 due to observing the past
k samples of the random processsi. Both, Granger causality and TE, thus define causal influence
as a reduction in the uncertainty of a process due to observing another process, but employ different
metrics to measure reduction in uncertainty. While TE is a measure that applies to any type of
random processes, it is difficult to compute in practice. Hence, in this study only Gaussian processes
are considered, i.e., it is assumed that

(
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)

is jointly Gaussian distributed. TE can
then be computed as

T GP
k (si[t] → sj [t + 1]) =

1

2
log

det R(sk
j
[t],sk

i
[t]) det R(sj [t+1],sk

j
[t])

det R(sj [t+1],sk
j
[t],sk

i
[t]) det R(sk

j
[t])

, (2)

with R(·) the (cross-)covariance matrices of the respective random processes [17]. In comparison
to Granger causality and related measures, TE for Gaussian processes possesses several advantages.
It is easy to compute from a numerical perspective, since it does not require fitting a multivariate
autoregressive model including (implicit) inversion of large matrices. Furthermore, for continuous
processes it is invariant under coordinate transformations [17]. Importantly, this entails invariance
with regard to scaling of the random processes.

Computing TE for Gaussian processes requires estimation of the (cross-)covariance matrices
in (2). Consider a matrixS ∈ R

2×T×N , corresponding to data recorded from two EEG
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sources during an experimental paradigm withN trials of T samples each. In order to compute
TGP

k (s1[t] → s2[t + 1]) for t = k + 1, . . . , T − k − 1, it is assumed that in each trials1[t] and
s2[t] are i.i.d. samples from the distributionp(s1[t], s2[t]), i.e., that the non-stationary Gaussian pro-
cesses that give rise to the observation matrixS are identical for each of theN repetitions of the
experimental paradigm. For each instant in time, TE can then be evaluated by computing the sample
(cross-)covariance matrices required in (2) across trials. Note that evaluating (2) requires specifica-
tion of k. In general,k should be chosen as large as possible in order to maximize information on
the random processes contained in the (cross-)covariance matrices. However, choosingk too large
leads to rank deficient matrices with a determinant of zero. Here, for each observation matrixS the
highest possiblek is chosen such that none of the matrices in (2) is rank deficient.

2.2 The Problem of Volume Conduction in EEG Connectivity Analysis

The goal of connectivity analysis in EEG recordings is to estimate connectivity patterns between
different regions of the brain. Unfortunately, EEG recordings do not offer direct access to EEG
sources. Instead, each EEG electrode measures a linear and instantaneous superposition of EEG
sources within the brain [18]. This poses a problem for symmetric connectivity measures, since
these assess instantaneous coupling between electrodes [18]. Asymmetric connectivity measures
such as TE, on the other hand, are not based on instantaneous coupling, but rather consider prediction
errors. It is not obvious that instantaneous volume conduction also poses a problem for this type of
measures. Unfortunately, the following example demonstrates that volume conduction also leads to
incorrect connectivity estimates in asymmetric connectivity analysis based on TE.

Example 1 (Volume Conduction Effects in Connectivity Analysis based on Transfer Entropy)
Consider the EEG signalsx1[t] and x2[t], recorded at two electrodes placed on the scalp, that
consist of a linear superposition of three EEG sourcess1[t] to s3[t] situated somewhere within the
brain (Fig. 2.a). Letx[t] = (x1[t], x2[t])

T ands[t] = (s1[t], s2[t], s3[t])
T. Thenx[t] = As[t],

with A ∈ R
2×3 describing the projection strength of each source to each electrode. For sake of

simplicity, assume thatA = (1 0 1 ; 0 1 1 ), i.e., that the first source only projects to the first
electrode with unit strength, the second source only projects to the second electrode with unit
strength, and the third source projects to both electrodes with unit strength. Furthermore, assume
that

p(s[t + 1], s[t]) = N (0,Σ) with Σ =















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 γ
0 0 0 1 0 0
0 0 0 0 1 0
0 0 γ 0 0 1















, (3)

i.e., that all sources have zero mean, unit variance, are mutually independent, ands1 and s2 are
uncorrelated in time. Onlys3[t] and s3[t + 1] are assumed to be correlated with covarianceγ
(Fig. 2.b). In this setting, it would be desirable to obtain zero TE between both electrodes, since
there is no interaction between the sources giving rise to the EEG. However, some rather tedious
algebraic manipulations reveal that in this case

T GP
1 (x2[t] → x1[t + 1]) =

1

2
log

(

3

2

)

+
1

2
log

(

4 − γ2

6 − 2γ2

)

. (4)

Note that (4) is zero if and only ifγ = 0, i.e., if s3 represents white noise. Otherwise, TE between
the two electrodes is estimated to be greater than zero solely due to volume conduction effects from
sources3. Further note that qualitatively this result holds independently of the strength of the
projection of the third source to both electrodes.

2.3 Attenuation of Volume Conduction Effects via Beamforming

One way to avoid volume conduction effects in EEG connectivity analysis is to perform source
localization on the obtained EEG data, and apply connectivity measures on estimated current density
time-series at certain locations within the brain [11]. This is feasible to test certain hypothesis, e.g.,
to evaluate whether there exists a causal link between two specific points within the brain. However,
testing pairwise causal links between more than just a few points within the brain is computationally
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Figure 2: Illustration of volume conduction effects in EEG connectivity analysis.

intractable. Accordingly, attenuation of volume conduction effects via source localization is not
feasible if a complete connectivity pattern considering the whole brain is desired. Here, a different
approach is pursued. It is well known that primary motor cortex is central to MI as measured by
EEG [3]. Accordingly, it is assumed that any brain region involved in MI displays some connectivity
to the primary motor cortex. This (admittedly rather strong) assumption enables a complete analysis
of the connectivity patterns during MI covering the whole brain in the following way. First, two
spatial filters, commonly known as Beamformers, are designed that selectively extract EEG sources
originating within the right and left motor cortex, respectively [6]. In brief, this can be accomplished
by solving the optimization problem

w
∗ = argmax

w∈RM

{

w
TRx̃l/r

w

w
TRxw

}

, (5)

with Rx ∈ R
M×M the covariance of the recorded EEG, andRx̃l/r

∈ R
M×M model-based spatial

covariance matrices of EEG sources originating within the left/right motor cortex. In this way,
spatial filters can be obtained that optimally attenuate the variance of all EEG sources not originating
within the left/right motor cortex. The desired spatial filters are obtained as the eigenvectors with
the largest eigenvalue of the generalized eigenvalue problemRx̃l/r

w = λRxw (cf. [6] for a more
detailed presentation).

With EEG sources originating within the left and right motor cortex extracted, TE from all EEG
electrodes into the left and right motor cortex can be computed. In this way, volume conduction
effects from all sources within the brain into the left/right motor cortex can be optimally attenuated.
However, volume conduction effects from the left/right motor cortex to any of the EEG electrodes
still poses a problem. Accordingly, it has to be verified if any positive TE from an EEG electrode
into the left/right motor cortex could be caused by bandpower changes within the left/right motor
cortex. Positive TE from any electrode into the left/right motor cortex can only be considered as a
genuine causal link if it is not accompanied by a bandpower change in the respective motor cortex.

3 Experimental Results

To investigate connectivity patterns during MI the following experimental paradigm was employed.
Subjects sat in a dimly lit and shielded room, approximately two meters in front of a silver screen.
Each trial started with a centrally displayed fixation cross. After three seconds, the fixation cross was
overlaid with a centrally placed arrow pointing to the left or right. This instructed subjects to begin
MI of the left or right hand, respectively. Subjects were explicitly instructed to perform haptic MI,
but the exact choice of the type of imaginary hand movement was left unspecified. After a further
seven seconds the arrow was removed, indicating the end of the trial and start of the next trial. 150
trials per class were carried out by each subjects in randomized order. During the experiment, EEG
was recorded at 128 electrodes placed according to the extended 10-20 system with electrode Cz as
reference. EEG data was re-referenced to common average reference offline. Four healthy subjects
participated in the experiment, all of which were male and right handed with an age of27 ± 2.5
years. For each subject, electrode locations were recorded with an ultrasound tracking system. No
artifact correction was employed and no trials were rejected.

For each subject, model-based covariance matricesRx̃l/r
for EEG sources within the left/right motor

cortex were computed as described in [6]. The EEG covariance matrixRx was computed for each
subject using all available data, and the two desired Beamformers, extracting EEG sources from the
left and right motor cortex, were computed by solving (5). The EEG sources extracted from the
left/right motor cortex as well as the unfiltered data recorded at each electrode were then bandpass-
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filtered with sixth-order Butterworth filters in five frequency bands ranging from 5 to 55 Hz in steps
of 10 Hz. Then, TE was computed from all EEG electrodes into the left/right motor cortex at each
sample point as described in Section 2.1. Furthermore, for each subject class-conditional bandpower
changes (ERD/ERS) of sources extracted from the left/right motor cortex were computed in order
to identify frequency bands with common modulations in bandpower and TE. Two subjects showed
significant modulations of bandpower in all five frequency bands. These were excluded from further
analysis, since any observed positive TEs could have been confounded by volume conduction. The
resulting topographies of mean TE between conditions of the two remaining subjects are shown
in Fig. 3. Here, the first two columns show mean TE from all electrodes into the left/right motor
cortex during MI of either hand (3.5-10s) minus mean TE during baseline (0.5-3s) in each of the
five frequency bands. The last two columns show mean differences in TE into the left/right motor
cortex between MI of the left and right hand (both conditions also baseline corrected). Note that
the topographies in Fig. 3 have been normalized to the maximum difference across conditions to
emphasize differences between conditions. Interestingly, no distinct differences in TE are observed
between MI of the left and right hand. Instead, strongest differences in TE are observed in rest
vs. MI of either hand (left two columns). The amount of decrease in TE during MI relative to
rest increases with higher frequencies, and is most pronounced in theγ-band from 45-55 Hz (last
row, left two columns). Topographically, strongest differences are observed in frontal, pre-central,
and post-central areas. Observed changes in TE are statistically significant with significance level
α = 0.01 at all electrodes in Fig. 3 marked with red crosses (statistical significance was tested non-
parametrically and individually for each subject, Beamformer, and condition by one thousand times
randomly permuting the EEG data of each recorded trial in time and testing the null-hypothesis that
changes in TE at least as large as those in Fig.3 are observed without any temporal structure being
present in the data). Due to computational resources only a small subset of electrodes was tested
for significance. The observed changes in TE display opposite modulations in comparison to mean
bandpower changes observed in left/right motor cortex relative to baseline (Fig. 4, only significant
(α = 0.01) bandpower changes relative to baseline (0-3s) plotted). Here, strongest modulation of
bandpower is found in theµ- (∼ 10 Hz) andβ-band (∼25 Hz). Frequencies above 35 Hz show very
little modulation, indicating that the observed differences in TE at high frequencies in Fig. 3 are not
due to volume conduction but genuine causal links.

4 Discussion

In this study, Beamforming and TE were employed to investigate the topographies of ’informa-
tion flow’ into the left and right motor cortex during MI as measured by EEG. To the best of the
author’s knowledge, this is the first study investigating asymmetric connectivity patterns between
brain regions during MI of different limbs considering a broad frequency range, a large number of
recordings sites, and properly taking into account volume conduction effects. However, it should
be pointed out that there are several issues that warrant further investigation. First, the presented
results are obtained from only two subjects, since two subjects had to be excluded due to possible
volume conduction effects. Future studies with more subjects are required to validate the obtained
results. Also, no outflow from primary motor cortex and no TE between brain regions not including
primary motor cortex have been considered. Finally, the methodology presented in this study can
not be applied in a straight-forward manner to single-trial data, and is thus only of limited use for
actual feature extraction in BCIs.

Never the less, the obtained results indicate that bandpower changes in motor cortex and connectiv-
ity between motor cortex and other regions of the brain are processes that occupy distinct spectral
bands and are modulated by different cognitive tasks. In conjunction with the observation of no
distinct changes in connectivity patterns between MI of different limbs, this indicates that in [14]
and [15] bandpower changes might have been misinterpreted as connectivity changes. This is further
supported by the fact that these studies focused on frequency bands displaying significant modula-
tion of bandpower (8-30 Hz) and did not control for volume conduction effects. In conclusion, the
pronounced modulation of connectivity between MI of either hand vs. rest in theγ-band observed in
this study underlines the importance of also considering high frequency bands in EEG connectivity
analysis. Furthermore, since theγ-band is thought to be crucial for dynamic functional connectivity
between brain regions [10], future studies on connectivity patterns in BCIs should consider exper-
imental paradigms that maximally vary cognitive demands in order to activate different networks
within the brain across conditions.
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