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1 Proof of Proposition 1

Proposition 1 (Bias-variance trade-off). Assume thatJ(θ) is three times continuously differentiable
in a small neighborhood ofθ, then the asymptotic (whenN → ∞) bias of the naive FD estimate
IN,M
h is of orderO(h2) and its variance isO(N−1M−1h−2).

Proof. Thanks to the consistency property of PFs,E
[

limN→∞ IN,M
h

]

= J(θ+h)−J(θ−h)
2h

, and using

a three-order Taylor expansions ofJ , we haveJ(θ+h)−J(θ−h)
2h

= ∂J(θ) + ∂3J(θ)
∂θ3

h2

6 + o(h2). We

deduce the asymptotic bias of the naive FD gradient estimate: E
[

limN→∞ IN,M
h

]

− ∂J(θ) =

O(h2).

Now, since the two stochastic estimatorsJN
ωm

(θ + h) and JN
ω

m′
(θ − h) are independent, the

variance ofIN,M
h is 1

4Mh2

(

Var[JNωm(θ + h)] + Var[JNωm′(θ − h)]
)

. Now, an IPS satis-
fies a Central Limit Theorem (see e.g. (Del Moral, 2004; Douc &Moulines, 2008) for de-
tails), thus Var[JN

ω (θ)]∼N→∞ σ2(θ)/N , whereσ2(θ) is the asymptotic variance. We deduce that

Var[IN,M
h ]∼(N,M,h)→(∞,∞,0)

σ2(θ)
2NMh2 .

2 Proof of Proposition 2

Proposition 2. Under weak conditions onf (see (Moral & Miclo, 2000) for general assumptions
or (Douc & Moulines, 2008) for refined assumptions), there exits a neighborhood ofθ, such that
for any θ′ in this neighborhood,bN

t,θ′(f) defined by (3) is a consistent estimator ofbt,θ′(f), i.e.
limN→∞ bN

t,θ′(f) = bt,θ′(f) almost surely.

Proof. For anyθ′, the belief feature is:

bt,θ′(f, Y1:t(θ
′)) = E[f(Xt(θ

′))|Y1:t(θ
′)]

=
E

[

f(Xt(θ
′))

∏t
s=1 gs(θ

′)
]

E

[

∏t

s=1 gs(θ′)
]

=
E

[

f(Xt(θ
′))

Q

t

s=1
gs(θ′)

Q

t

s=1
gs(θ)

∏t

s=1 gs(θ)
]

E

[
Q

t

s=1
gs(θ′)

Q

t

s=1
gs(θ)

∏t
s=1 gs(θ)

]

=
E

[

f(Xt(θ
′))

Q

t

s=1
gs(θ′)

Q

t

s=1
gs(θ)

∏t

s=1 gs(θ)
]

E

[

∏t

s=1 gs(θ)
]





E

[
Q

t

s=1
gs(θ′)

Q

t

s=1
gs(θ)

∏t

s=1 gs(θ)
]

E

[

∏t

s=1 gs(θ)
]





−1

,

where we used the short notationgs(θ) to denoteg(Xs(θ), Ys(θ)). Now we use the general PF
convergence properties for Feynman-Kac (FK) models (see (Moral & Miclo, 2000; Del Moral,
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2004) or (Douc & Moulines, 2008)) which, applied to a FK flow with Markov chainX1:t, (random)
potential functionsφ(Xs), and test functionH(X1:t), states that the PF estimate:1

N

∑N

i=1 H(xi
1:t)

is consistent withE[H(X1:t)
Q

t

s=1
φ(Xs)]

E[
Q

t

s=1
φ(Xs)]

.

Applying this result successively to the test functionH
def
= f(Xt(θ

′))
Q

t

s=1
g(Xs(θ′),Ys(θ

′))
Q

t

s=1
g(Xs(θ),Ys(θ))

and to

H
def
=

Q

t

s=1
g(Xs(θ′),Ys(θ′))

Q

t

s=1
g(Xs(θ),Ys(θ))

, with the potentialφ(Xs)
def
= g(Xs(θ), Ys(θ)), we deduce that the PF

estimator:

1
N

∑N

i=1 f(xi
t(θ

′))
Q

t

s=1
g(xi

s
(θ′),ys(θ′))

Q

t

s=1
g(xi

s
(θ),ys(θ))

1
N

∑N
i=1

Q

t

s=1
g(xi

s
(θ′),ys(θ′))

Q

t

s=1
g(xi

s
(θ),ys(θ))

=

N
∑

i=1

lit(θ, θ
′)

∑N

j=1 ljt (θ, θ
′)

f(xi
t(θ

′)) = bN
t,θ′(f)

is consistent withbt,θ′(f). The denominator being the product of the likelihood ratiosis bounded
away from 0 since from the smoothness assumption on all necessary functions, the limit of
Q

t

s=1
g(Xs(θ′),Ys(θ′)

Q

t

s=1
g(Xs(θ),Ys(θ))

whenθ′ → θ exists and equals1. Thus, in a neighborhood ofθ, the PF es-

timator (3) is well defined and is a consistent estimator ofbt,θ′(f).
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