Supplementary Material
Sparse Convolved Gaussian Processes

for Multi-output Regression
A Convolution with Gaussian kernel functions
For the covariance matrix of the latent functions we employ
Ky, (X, x') = exp {—% (x — x')T L, (X — x')}

and for the smoothing kernel
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Applying successively the result for the multiplication of Gaussian distributions [3], the covariance functions
in expressions (3) and (4) are also Gaussian covariances given by
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B Matrix Derivatives

We follow the notation of [3] obtaining similar results to [7]. This notation allows us to apply the chain rule
for matrix derivation in a straight-forward manner. Let's defl@e = vec G, wherevec is the vectorization
operator over the matri&. For a function’ the equivalence betweef§ and 2% is given through2s- =

((2%):)". The log-likelihood function is given as
1 _ 1 - -
£(2,0) = — logD + Kr.uKy WKus| — 5 tr (D + KeuKahKug)  yy'| +const  (10)

where we have redefindd asD = [Kf,f — Kf7uK;i1Ku’f} ©® M + 3, to keep a simpler notation. Using
the matrix inversion lemma and its equivalent form for determinants, expression (10) can be written as

1 1 1 1 _ 1 _ _ _
L(Z,0) ) log|Ku,u| — § log|A| — 3 log|D| — 5 tr [D lny] + 3 tr {D 'KeuA 'Ky D lny} .

We can find2% and 4% applying the chain rule t& obtaining expressions fog%)f, ng,u and alﬁﬁu and
combining those with the relevant derivatives of the covariance$é arndZ,
0L  0La OA:0D: 0Lp 0D: 0La OA: OLc 5 (11)
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where the subindex ifg stands for those terms gfwhich depend o, G is eitherKe ¢, Ky r or Ky, and
dck is zero if G is equal taKy ¢ and one in other case. Next we present expressions for each partial derivative

af(?,;: = diag(M:), 8?(12;: = —diag(M:) [(I® KeuKyy) + (KeuKow ®I) Tp],
af{]z:u: = diag(M:) (Ke,uKym ©@ Ke oK) % = (KufD '®I) + (I®KyusD ') Ta
8?{‘:“: -1, gf{“uf = ((A"KuD yy D)) gﬁ’:; =S (A7

whereC = A~ + A7' Ky sD lyy ' D 'K yA™ , H = D — yy' + KeuA 'Ky D lyy ' +
(Kf_yL.A‘lKu,fD‘lny)T andTp andT A arevectorized transpose matricg8] and we have not included



their dimensions to keep the notation clearer. We can replace the above expressions in (11) to find the corre-
sponding derivatives, so

aﬁff: = 5@ (KD ©KusD ™) — L (DT'HD):) 7| ding(M:)  (122)
=— % (D"'JD ™) :)T diag(M:) = f% (diag(M:) (D~'JD ) :)T (12b)
=- % (DD teMm):)' = —% Q)’ (12c)
where in (12a)J H - K¢y CKus andQ = (D7'JD"'©M). We have used the property

(B:)" (FoP) = ((P'BF) :)T in (12a) and the propertyiag(B:)F: = (B ® F):, to go from (12b)
to (12c). We also have

1
aKu,f: 2 ’ 2 (13)
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where in (13)(Q))" (F®T)Tp = (Q:)' To I®F) = (THQ:) ' I®F) = (Q:) (I® F). Asimilar
analysis is formulated for the term involvifiBa . Finally, results formgﬁf: and 2% are obtained as
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