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Abstract

We formulate the problem of bipartite graph inference as a supervised learning
problem, and propose a new method to solve it from the viewpoint of distance
metric learning. The method involves the learning of two mappings of the hetero-
geneous objects to a unified Euclidean space representing the network topology of
the bipartite graph, where the graph is easy to infer. The algorithm can be formu-
lated as an optimization problem in a reproducing kernel Hilbert space. We report
encouraging results on the problem of compound-protein interaction network re-
construction from chemical structure data and genomic sequence data.

1 Introduction

The problem of bipartite graph inference is to predict the presence or absence of edges between
heterogeneous objects known to form the vertices of the bipartite graph, based on the observation
about the heterogeneous objects. This problem is becoming a challenging issue in bioinformatics
and computational biology, because there are many biological networks which are represented by a
bipartite graph structure with vertices being heterogeneous molecules and edges being interactions
between them. Examples include compound-protein interaction network consisting of interactions
between ligand compounds and target proteins, metabolic network consisting of interactions be-
tween substrates and enzymes, and host-pathogen protein-protein network consisting of interactions
between host proteins and pathogen proteins.

Especially, the prediction of compound-protein interaction networks is a key issue toward genomic
drug discovery, because drug development depends heavily on the detection of interactions between
ligand compounds and target proteins. The human genome sequencing project has made avail-
able the sequences of a large number of human proteins, while the high-throughput screening of
large-scale chemical compound libraries is enabling us to explore the chemical space of possible
compounds[1]. However, our knowledge about the such compound-protein interactions is very lim-
ited. It is therefore important is to detect unknown compound-protein interactions in order to identify
potentially useful compounds such as imaging probes and drug leads from huge amount of chemical
and genomic data.

A major traditional method for predicting compound-protein interactions is docking simulation
[2]. However, docking simulation requires 3D structure information for the target proteins. Most
pharmaceutically useful target proteins are membrane proteins such as ion channels and G protein-
coupled receptors (GPCRs). It is still extremely difficult and expensive to determine the 3D struc-
tures of membrane proteins, which limits the use of docking. There is therefore a strong incentive to
develop new useful prediction methods based on protein sequences, chemical compound structures,
and the available known compound-protein interaction information simultaneously.

Recently, several supervised methods for inferring a simple graph structure (e.g., protein network,
enzyme network) have been developed in the framework of kernel methods [3, 4, 5]. The corre-
sponding algorithms of the previous methods are based on kernel canonical correlation analysis
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[3], distance metric learning [4], andem-algorithm [5], respectively. However, the previous meth-
ods can only predict edges between homogeneous objects such as protein-protein interactions and
enzyme-enzyme relations, so it is not possible to predict edges between heterogeneous objects such
as compound-protein interactions and substrate-enzyme interactions, because their frameworks are
based only on a simple graph structure with homogeneous vertices. In contrast, in this paper we
address the problem of supervised learning of the bipartite graph rather than the simple graph.

In this contribution, we develop a new supervised method for inferring the bipartite graph, borrowing
the idea of distance metric learning used in the framework for inferring the simple graph [4]. The
proposed method involves the learning of two mappings of the heterogeneous objects to a unified
Euclidean space representing the network topology of the bipartite graph, where the graph is easy to
infer. The algorithm can be formulated as an optimization problem in a reproducing kernel Hilbert
space. To our knowledge, there are no statistical methods to predict bipartite graphs from observed
data in a supervised context. In the results, we show the usefulness of the proposed method on the
predictions of compound-protein interaction network reconstruction from chemical structure data
and genomic sequence data.
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Figure 1: An illustration of the problem of the supervised bipartite graph inference

2 Formalism of the supervised bipartite graph inference problem

Let us formally define the supervised bipartite graph inference problem. Suppose that we are given
an undirected bipartite graphG = (U + V,E), whereU = (u1, · · · , un1

) andV = (v1, · · · , vn2
)

are sets of heterogeneous vertices andE ⊂ (U × V ) ∪ (V × U) is a set of edges. Note that the
attribute ofU is completely different from that ofV . The problem is, given additional sets of vertices
U ′ = (u′

1, · · · , u
′

m1
) andV ′ = (v′

1, · · · , v
′

m2
), to infer a set of new edgesE′ ⊂ U ′ × (V + V ′) ∪

V ′ × (U + U ′) ∪ (U + U ′) × V ′ ∪ (V + V ′) × U ′ involving the additional vertices inU ′ andV ′.
Figure 1 shows an illustration of this problem.

The prediction of compound-protein interaction networks is a typical problem which is suitable
in this framework from a practical viewpoint. In this case,U corresponds to a set of compounds
(known ligands),V corresponds to a set of proteins (known targets), andE corresponds to a set of
known compound-protein interactions (known ligand-target interactions).U ′ corresponds to a set of
additional compounds (new ligand candidates),V ′ corresponds to a set of additional proteins (new
target candidates), andE′ corresponds to a set of unknown compound-protein interactions (potential
ligand-target interactions).

The prediction is performed based on available observations about the vertices. Sets of vertices
U = (u1, · · · , un1

), V = (v1, · · · , vn2
), U ′ = (u′

1, · · · , u
′

m1
) andV ′ = (v′

1, · · · , v
′

m2
) are repre-

sented by sets of observed dataX = (x1, · · · , xn1
), Y = (y1, · · · , yn2

), X ′ = (x′

1, · · · , x
′

m1
) and

Y ′ = (y′

1, · · · , y
′

m2
), respectively. For example, compounds are represented by molecular structures

and proteins are represented by amino acid sequences. The question is how to predict unknown
compound-protein interactions from compound structures and protein sequences using prior knowl-
edge about known compound-protein interactions. Sets ofU andV (X andY) are referred to as
training sets, and heterogeneous objects are represented byu andv in the sense of vertices on the
bipartite graph or byx andy in the sense of objects in the observed data below.

In order to deal with the data heterogeneity and take advantage of recent works on kernel similarity
functions on general data structures [6], we will assume thatX is a set endowed with a positive def-
inite kernelku, that is, a symmetric functionku : X 2 → R satisfying

∑n1

i,j=1 aiajku(xi, xj) ≥ 0
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for any n1 ∈ N, (a1, a2, · · · , an1
) ∈ R

n1 and (x1, x2, · · · , xn1
) ∈ X . Similarly, we will as-

sume thatY is a set endowed with a positive definite kernelkv, that is, a symmetric function
kv : Y2 → R satisfying

∑n2

i,j=1 aiajkv(yi, yj) ≥ 0 for any n2 ∈ N, (a1, a2, · · · , an2
) ∈ R

n2

and(y1, y2, · · · , yn2
) ∈ Y.

3 Distance metric learning (DML) for the bipartite graph inference

3.1 Euclidean embedding and distance metric learning (DML)

Suppose that a bipartite graph must be reconstructed from the similarity information aboutn1 objects
(x1, · · · , xn1

) in X (observed data forU ) andn2 objects(y1, · · · , yn2
) in Y (observed data forV ).

One difficulty is that the attribute of observed data differs betweenX andY in nature, so it is
not possible to evaluate the link between(x1, · · · , xn1

) and(y1, · · · , yn2
) from the observed data

directly. For example, in the case of compounds and proteins, eachx has a chemical graph structure
and eachy has a sequence structure, so the data structures completely differ betweenx and y.
Therefore, we make an assumption thatn1 objects(x1, · · · , xn1

) andn2 objects(y1, · · · , yn2
) are

implicitly embedded in a unified Euclidean spaceR
d, and a graph is inferred on those heterogeneous

points by the nearest neighbor approach, i.e., putting an edge between heterogeneous points that are
close to each other.

We propose the following two step procedure for the supervised bipartite graph inference:

1. embed the heterogeneous objects into a unified Euclidean space representing the network
topology of the bipartite graph, where connecting heterogeneous vertices are close to each
other, through mappingsf : X → R

d andg : Y → R
d

2. apply the mappingsf andg to X ′ andY ′ respectively, and predict new edges between
the heterogeneous objects if the distance between the points{f(x), x ∈ X ∪ X ′} and
{g(y), y ∈ Y ∪ Y ′} is smaller than a fixed thresholdδ.

While the second step in this procedure is fixed, the first step can be optimized by supervised learning
of f andg using the known bipartite graph. To do so, we require the mappingsf andg to map
adjacent heterogeneous vertices in the known bipartite graph onto nearby positions in a unified
Euclidian spaceRd, in order to ensure that the known bipartite graph can be recovered to some
extent by the nearest neighbor approach.

Given functionsf : X → R andg : Y → R, a possible criterion to assess whether connected (resp.
disconnected) heterogeneous vertices are mapped onto similar (resp. dissimilar) points inR is the
following:

R(f, g) =

∑

(ui,vj)∈E(f(xi) − g(yj))
2 −

∑

(ui,vj)/∈E(f(xi) − g(yj))
2

∑

(ui,vj)∈U×V (f(xi) − g(yj))2
. (1)

A small value ofR(f, g) ensures that connected heterogeneous vertices tend to be closer than dis-
connected heterogeneous vertices in the sense of quadratic error.

To represent the connectivity between heterogeneous vertices on the bipartite graphG = (U+V,E),
we define a kind of the adjacency matrixAuv, where element(Auv)ij is equal to 1 (resp. 0) if
verticesui and vj are connected (resp. disconnected). Note that the size of the matrixAuv is
n1 × n2. We also define a kind of the degree matrix of the heterogeneous vertices asDu andDv,
where diagonal elements(Du)ii and(Dv)jj are the degrees of verticesui andvj (the numbers of
edges involving verticesui andvj), respectively. Note that all non-diagonal elements inDu andDv

are zero, and the sizes of the matrices aren1 × n1 andn2 × n2, respectively.

Let us denote byfU = (f(x1), · · · , f(xn1
))T ∈ R

n1 andgV = (g(y1), · · · , g(yn2
))T ∈ R

n2

the values taken byf andg on the training set. If we restrictfU andfV to have zero means as
∑n1

i=1 f(xi) = 0 and
∑n2

i=1 g(yi) = 0, then the criterion (1) can be rewritten as follows:

R(f, g) = 4

(

fU

gV

)T (

Du −Auv

−AT
uv Dv

) (

fU

gV

)

(

fU

gV

)T (

fU

gV

)

− 2 (2)
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To avoid the over-fitting problem and obtain meaningful solutions, we propose to regularize the
criterion (1) by a smoothness functional onf and g based on a classical approach in statistical
learning [7, 8]. We assume that thatf andg belong to the reproducing kernel Hilbert space (r.k.h.s.)
HU andHV defined by the kernelsku on X andkv on Y, and to use the norms off andg as
regularization operators. Let us define by||f || and||g|| the norms off andg in HU andHV . Then,
the regularized criterion to be minimized becomes:

R(f, g) =

(

fU

gV

)T (

Du −Auv

−AT
uv Dv

)(

fU

gV

)

+ λ1||f ||
2 + λ2||g||

2

(

fU

gV

)T (

fU

gV

)

, (3)

whereλ1 andλ2 are regularization parameters which control the trade-off between minimizing the
original criterion (1) and ensuring that the solution has a small norm in the r.k.h.s.

The criterion is defined up to a scaling of the functions and the solution is therefore a direction in
the r.k.h.s. Here we set additional constraints. In this case we impose the norm||f || = ||g|| = 1,
which corresponds to an orthogonal projection onto the direction selected in the r.k.h.s. Note that
the criterion can be used for extracting one-dimentional feature of the objects. In order to obtain a
d-dimensional feature representation of the objects, we propose to iterate the minimization of the
regularized criterion (3) under orthogonality constraints in the r.k.h.s., that is, we recursively define
thep-th featuresfp andgp for p = 1, · · · , d as follows:

(fp, gp) = arg min

(

fU

gV

)T (

Du −Auv

−AT
uv Dv

)(

fU

gV

)

+ λ1||f ||
2 + λ2||g||

2

(

fU

gV

)T (

fU

gV

)

(4)

under the orthogonality constraints:f⊥f1, · · · , fp−1, andg⊥g1, · · · , gp−1.

In the prediction process, we map any new objectsx′ ∈ X ′ andy′ ∈ Y ′ by the mappingsf andg
respectively, and predict new edges between the heterogeneous objects if the distance between the
points{f(x), x ∈ X ∪ X ′} and{g(y), y ∈ Y ∪ Y ′} is smaller than a fixed thresholdδ.

3.2 Algorithm

Let ku andkv be the kernels on the setsX andY, where the kernels are both centered inHU and
HV . According to the representer theorem [9] in the r.k.h.s., for anyp = 1, · · · , d, the solution to
equation (4) has the following expansions:

fp(x) =

n1
∑

j=1

αp,jku(xj , x), gp(y) =

n2
∑

j=1

βp,jkv(yj , y), (5)

for some vectorαp = (αp,1, · · · , αp,n1
)T ∈ R

n1 andβp = (βp,1, · · · , βp,n2
)T ∈ R

n2 .

Let Ku andKv be the Gram matrices of the kernelsku andku such that(Ku)ij = ku(xi, xj), i, j =
1, · · · , n1 and(Kv)ij = kv(yi, yj), i, j = 1, · · · , n2. The corresponding feature vectorsfp,U and
gp,V can be written asfp,U = Kuαp andgp,V = Kvβp, respectively. The squared norms of features

f andg in HU andHV are equal to||f ||2 = αT Kuα and||g||2 = βT Kvβ, so the normalization
constraints forf andg can be written asαT Kuα = βT Kvβ = 1. The orthogonarity constraints
fp⊥fq andgp⊥gq (p 6= q) can be written byαT

p Kuαq = 0 andβT
p Kvβq = 0.

Using the above representations, the minimization problem ofR(f, g) is equivalent to findingα and
β which minimize

R(f, g) =

(

α
β

)T (

KuDuKu −KuAuvKv

−KvAT
uvKu KvDvKv

)(

α
β

)

+ λ1α
T Kuα + λ2β

T Kvβ

(

α
β

)T (

KuKu 0
0 KvKv

)(

α
β

)

, (6)
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under the following orthogonality constraints:

αT Kuα1 = · · · = αT Kuα(p−1) = 0, βT Kvβ1 = · · · = βT Kvβ(p−1) = 0.

Taking the differential of equation (6) with respect toα andβ and setting to zero, the solution of
the first vectorsα1 andβ1 can be obtained as the eigenvectors associated with the smallest (non-
negative) eigenvalue in the following generalized eigenvalue problem:

(

KuDuKu + λ1Ku −KuAuvKv

−KvAT
uvKu KvDvKv + λ2Kv

)(

α
β

)

= ρ

(

KuKu 0
0 KvKv

) (

α
β

)

(7)

Sequentially, the solutions of vectorsα1, · · · ,αd andβ1, · · · ,βd can be obtained as the eigenvectors
associated withd smallest (non-negative) eigenvalues in the above generalized eigenvalue problem.

4 Relationship with other methods

The process of embedding heterogeneous objects into the same space is similar to correspondence
analysis (CA) [10] and Co-Occurence Data Embedding (CODE) [11] which are unsupervised meth-
ods to embed the rows and columns of a contingency table (adjacency matrixAuv in this study) into
a low dimensional Euclidean space. However, critical differences with our proposed method are as
follows: i) the above methods cannot use observed data (XandY in this study) about heterogeneous
nodes for prediction, because the algorithms are based only on co-occurence information (Auv in
this study), and ii) we need to define a new representation of not only the objects in the training set
but also additional objects outside of the training set. Therefore, it is not possible to directly apply
the above methods to the bipartite graph inference problem.

Recall that the goal of the ordinary CA is to find embedding functionsφ : U → R andψ : V → R

which maximize the following correlation coefficient:

corr(φ, ψ) =

∑

i,j I{(ui, vj) ∈ E}φ(ui)ψ(vj)
√

∑

i dui
φ(ui)2

√

∑

j dvj
ψ(vj)2

, (8)

whereI{·} is an indicator function which returns 1 if the argument is true or 0 otherwise,dui
(resp.

dvj
) is the degree of nodeui (resp.vj), and

∑

i φ(ui) = 0 (resp.
∑

j ψ(vj) = 0) is assumed [10].
Here we attempt to consider an extension of the CA using the idea of kernel methods so that it can
work in the context of the bipartite graph inference problem. The method is referred to as kernel
correspondence analysis (KCA) below.

To formulate the KCA, we propose to replace the embedding functionsφ : U → R andψ : V → R

by functionsf : X → R andg : Y → R, wheref andg belong to the r.k.h.s.HU andHV defined
by the kernelsku on X andkv on Y. Then, we consider maximizing the following regularized
correlation coefficient:

corr(f, g) =

∑

i,j I{(ui, vj) ∈ E}f(xi)g(yj)
√

∑

i dui
f(xi)2 + λ1||f ||2

√

∑

j dvj
g(yj)2 + λ2||g||2

, (9)

whereλ1 and λ2 are regularization parameters which control the trade-off between maximizing
the original correlation coefficient between two features and ensuring that the solution has a small
norm in the r.k.h.s. In order to obtain ad-dimensional feature representation and deal with the
scale issue, we propose to iterate the maximization of the regularized correlation coefficient (9)
under orthogonality constraints in the r.k.h.s., that is, we recursively define thep-th featuresfp

and gp for p = 1, · · · , d as (fp, gp) = arg max corr(f, g) under the orthogonality constraints:
f⊥f1, · · · , fp−1 andg⊥g1, · · · , gp−1 and the normalization constraints:||f || = ||g|| = 1.

Using the function expansions in equation (5) and related matrix representations defined in the pre-
vious section, the maximization problem of the regularized correlation coefficient in equation (9) is
equivalent to findingα andβ which maximize

corr(f, g) =
αT KuAuvKvβ

√

αT KuDuKuα + λ1αT Kuα

√

βT KvDvKvβ + λ2β
T Kvβ

. (10)
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Taking the differential of equation (10) with respect toα and β and setting to zero, the solution of
the first vectorsα1 andβ1 can be obtained as the eigenvectors associated with the largest eigenvalue
in the following generalized eigenvalue problem:
(

0 KuAuvKv

KvAT
uvKu 0

)(

α
β

)

= ρ

(

KuDuKu + λ1Ku 0
0 KvDvKv + λ2Kv

) (

α
β

)

.

(11)
Sequentially, the solutions of vectorsα1, · · · ,αd andβ1, · · · ,βd can be obtained as the eigenvectors
associated withd largest eigenvalues in the above generalized eigenvalue problem.

The final form of KCA is similar to that of kernel canonical correlation analysis (KCCA) [12, 13],
so KCA can be regarded as a variant of KCCA. However, the critical differences between KCA and
KCCA are as follows: i) the objects are the same across two different data in KCCA, while the
objects are different across two different data in KCA, and ii) KCCA cannot deal with co-occurence
information about the objects. In the experiment below, we are interested in the performance com-
parison between the distance learning in DML and correlation maximization in KCA. A similar
extension might be possible for CODE as well, but it is out of scope in this paper.

5 Experiment

5.1 Data

In this study we focus on compound-protein interaction networks made by four pharmaceutically
useful protein classes: enzymes, ion channels, G protein-coupled receptors (GPCRs), and nuclear
receptors. The information about compound-protein interactions were obtained from the KEGG
BRITE [14], SuperTarget [15] and DrugBank databases [16]. The number of known interactions
involving enzymes, ion channels, GPCRs, and nuclear receptors is 5449, 3020, 1124, and 199, re-
spectively. The number of proteins involving the interactions is 1062, 242, 134, and 38, respectively,
and the number of compounds involving the interactions is 1123, 475, 417, and 115, respectively.
The compound set includes not only drugs but also experimentally confirmed ligand compounds.
These data are regarded as gold standard sets to evaluate the prediction performance below.

Chemical structures of the compounds and amino acid sequences of the human proteins were ob-
tained from the KEGG database [14]. We computed the kernel similarity value of chemical struc-
tures between compounds using the SIMCOMP algorithm [17], where the kernel similarity value
between two compounds is computed by Tanimoto coefficient defined as the ratio of common sub-
structures between two compounds based on a graph alignment algorithm. We computed the se-
quence similarities between the proteins using Smith-Waterman scores based on the local alignment
between two amino acid sequences [18]. In this study we used the above similarity measures as
kernel functions, but the Smith-Waterman scores are not always positive definite, so we added an
appropriate identify matrix such that the corresponding kernel Gram matrix is positive definite,
which is related with [19]. All the kernel matrices are normalized such that all diagonals are ones.

5.2 Performance evaluation

As a baseline method, we used the nearest neighbor (NN) method, because this idea has been used in
traditional molecular screening in many public databases. Given a new ligand candidate compound,
we find a known ligand compound (in the training set) sharing the highest structure similarity with
the new compound, and predict the new compound to interact with proteins known to interact with
the nearest ligand compound. Likewise, given a new target candidate protein, we find a known target
protein (in the training set) sharing the highest sequence similarity with the new protein, and predict
the new protein to interact with ligand compounds known to interact with the nearest target protein.
Newly predicted compound-protein interaction pairs are assigned prediction scores with the highest
structure or sequence similarity values involving new compounds or new proteins in order to draw
the ROC curve below.

We tested the three different methods: NN, KCA, and DML on their abilities to reconstruct the four
compound-protein interaction networks. We performed the following 5-fold cross-validation proce-
dure: the gold standard set was split into 5 subsets of roughly equal size by compounds and proteins,
each subset was then taken in turn as a test set, and the training is performed on the remaining 4
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Table 1: AUC (ROC scores) for each interaction class, where ”train c.”, ”train p.”, ”test c.”, and ”test
p.” indicates training compounds, training proteins, test compounds and test proteins, respectively.

Data Prediction class Nearest neighbor Kernel correspondence Distance metric
(NN) analysis (KCA) learning (DML)

Enzyme i) test c. vs train p. 0.655± 0.011 0.741± 0.011 0.843± 0.006
ii) train c. vs test p. 0.758± 0.008 0.839± 0.009 0.878± 0.003
iii) test c. vs test p. 0.500± 0.000 0.692± 0.008 0.782± 0.013
iv) all c. vs all p. 0.684± 0.006 0.778± 0.008 0.852± 0.020

Ion i) test c. vs train p. 0.712± 0.004 0.768± 0.008 0.800± 0.004
channel ii) train c. vs test p. 0.896± 0.008 0.927± 0.004 0.945± 0.002

iii) test c. vs test p. 0.500± 0.000 0.748± 0.004 0.771± 0.008
iv) all c. vs all p. 0.770± 0.004 0.838± 0.005 0.864± 0.002

GPCR i) test c. vs train p. 0.714± 0.005 0.848± 0.002 0.882± 0.005
ii) train c. vs test p. 0.781± 0.026 0.895± 0.025 0.936± 0.004
iii) test c. vs test p. 0.500± 0.000 0.823± 0.038 0.864± 0.013
iv) all c. vs all p. 0.720± 0.013 0.866± 0.015 0.904± 0.003

Nuclear i) test c. vs train p. 0.715± 0.009 0.808± 0.018 0.832± 0.013
receptor ii) train c. vs test p. 0.683± 0.010 0.784± 0.012 0.812± 0.036

iii) test c. vs test p. 0.500± 0.000 0.670± 0.053 0.747± 0.049
iv) all c. vs all p. 0.675± 0.004 0.784± 0.011 0.815± 0.024

sets. We draw a receiver operating curve (ROC), the plot of true positives as a function of false
positives based on various thresholdsδ, where true positives are correctly predicted interactions and
false positives are predicted interactions that are not present in the gold standard interactions. The
performance was evaluated by AUC (area under the ROC curve) score. The regularization parameter
λ and the number of featuresd are optimized by applying the internal cross-validation within the
training set with the AUC score as a target criterion in the case of KCA and DML. To obtain robust
results, we repeated the above cross-validation experiment five times, and computed the average and
standard deviation of the resulting AUC scores.

Table 1 shows the resulting AUC scores for different sets of predictions depending on whether the
compound and/or the protein were in the initial training set or not. Compounds and proteins in the
training set are called training compounds and proteins whereas those not in the training set are
called test compounds and proteins. Four different classes are then possible: i) test compounds vs
training proteins, ii) training compounds vs test proteins, iii) test compounds vs test proteins, and
iv) all the possible predictions (the average of the above three parts). Comparing the three different
methods, DML seems to have the best performance for all four types of compound-protein inter-
action networks, and outperform the other methods KCA and NN at a significant level. The worst
performance of NN implies that raw compound structure or protein sequence similarities do not
always reflect the tendency of interaction partners in true compound-protein interaction networks.
Among the four prediction classes, predictions where neither the protein nor the compound are in
the training set (iii) are weakest, but even then reliable predictions are possible in DML. Note that
the NN method cannot predict iii) test vs test interaction, because it depends on the template infor-
mation about known ligand compounds and known target proteins. These results suggest that the
feature space learned by DML successfully represents the network topology of the bipartite graph
structure of compound-protein networks, and the correlation maximization learning used in KCA is
not enough to reflect the network topology of the bipartite graph.

6 Concluding remarks

In this paper, we developed a new supervised method to infer the bipartite graph from the viewpoint
of distance metric learning (DML). The originality of the proposed method lies in the embedding of
heterogeneous objects forming vertices on the bipartite graph into a unified Euclidian space and in
the learning of the distance between heterogeneous objects with different data structures in the uni-
fied feature space. We also discussed the relationship with correspondence analysis (CA) and kernel
canonical correlation analysis (KCCA). In the experiment, it is shown that the proposed method
DML outperforms the other methods on the problem of compound-protein interaction network re-
construction from chemical structure and genomic sequence data. From a practical viewpoint, the
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proposed method is useful for virtual screening of a huge number of ligand candidate compounds
being generated with various biological assays and target candidate proteins toward genomic drug
discovery. It should be also pointed out that the proposed method can be applied to other network
prediction problems such as metabolic network reconstruction, host-pathogen protein-protein inter-
action prediction, and customer-product recommendation system as soon as they are represented by
bipartite graphs.
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