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Abstract

Identification and comparison of nonlinear dynamical system models using noisy
and sparse experimental data is a vital task in many fields, however current meth-
ods are computationally expensive and prone to error due in part to the nonlinear
nature of the likelihood surfaces induced. We present an accelerated sampling
procedure which enables Bayesian inference of parameters in nonlinear ordinary
and delay differential equations via the novel use of Gaussian processes (GP). Our
method involves GP regression over time-series data, and the resulting derivative
and time delay estimates make parameter inference possible without solving the
dynamical system explicitly, resulting in dramatic savings of computational time.
We demonstrate the speed and statistical accuracy of our approach using examples
of both ordinary and delay differential equations, and provide a comprehensive
comparison with current state of the art methods.

1 Introduction

Mechanistic system modeling employing nonlinear ordinary or delay differential equations 1 (ODEs
or DDEs) is oftentimes hampered by incomplete knowledge of the system structure or the spe-
cific parameter values defining the observed dynamics [16]. Bayesian, and indeed non-Bayesian,
approaches for parameter estimation and model comparison [19] involve evaluating likelihood func-
tions, which requires the explicit numerical solution of the differential equations describing the
model. The computational cost of obtaining the required numerical solutions of the ODEs or DDEs
can result in extremely slow running times. In this paper we present a method for performing
Bayesian inference over mechanistic models by the novel use of Gaussian processes (GP) to predict
the state variables of the model as well as their derivatives, thus avoiding the need to solve the sys-
tem explicitly. This results in dramatically improved computational efficiency (up to four hundred
times faster in the case of DDEs). We note that state space models offer an alternative approach
for performing parameter inference over dynamical models particularly for on-line analysis of data,
see [2]. Related to the work we present, we also note that in [6] the use of GPs has been proposed
in obtaining the solution of fully parameterised linear operator equations such as ODEs. Likewise
in [12] GPs are employed as emulators of the posterior response to parameter values as a means of
improving the computational efficiency of a hybrid Monte Carlo sampler.

Our approach is different and builds significantly upon previous work which has investigated the use
of derivative estimates to directly approximate system parameters for models described by ODEs.
A spline-based approach was first suggested in [18] for smoothing experimental data and obtaining
derivative estimates, which could then be used to compute a measure of mismatch for derivative
values obtained from the system of equations. More recent developments of this method are de-
scribed in [11]. All of these approaches, however, are plagued by similar problems. The methods

1The methodology in this paper can also be straightforwardly extended to partial differential equations.



are all critically dependent on additional regularisation parameters to determine the level of data
smoothing. They all exhibit the problem of providing sub-optimal point estimates; even [11] may
not converge to a reasonable solution depending on the initial values selected, as we demonstrate in
Section 5.1. Furthermore, it is not at all obvious how these methods can be extended for partially
observed systems, which are typical in, e.g. systems biology [10, 1, 8, 19]. Finally, these methods
only provide point estimates of the “correct” parameters and are unable to cope with multiple so-
lutions. (Although it should be noted that [11] does offer a local estimate of uncertainty based on
second derivatives, at additional computational cost.) It is therefore unclear how objective model
comparison could be implemented using these methods.

In contrast we provide a Bayesian solution, which is capable of sampling from multimodal distribu-
tions. We demonstrate its speed and statistical accuracy and provide comparisons with the current
best methods. It should also be noted that the papers mentioned above have focussed only on param-
eter estimation for fully observed systems of ODEs; we additionally show how parameter inference
over both fully and partially observed ODE systems as well as DDEs may be performed efficiently
using our state derivative approach.

2 Posterior Sampling by Explicit Integration of Differential Equations

A dynamical system may be described by a collection of N ordinary differential equations and model
parameters θ which define a functional relationship between the process state, x(t), and its time
derivative such that ẋ(t) = f(x,θ, t). Likewise delay differential equations can be used to describe
certain dynamic systems, where now an explicit time-delay τ is employed. A sequence of process
observations, y(t), are usually contaminated with some measurement error which is modeled as
y(t) = x(t) + ε(t) where ε(t) defines an appropriate multivariate noise process, e.g. a zero-mean
Gaussian with variance σ2

n for each of the N states. If observations are made at T distinct time points
the N×T matrices summarise the overall observed system as Y = X+E. In order to obtain values
for X the system of ODEs must be solved, so that in the case of an initial value problem X(θ,x0)
denotes the solution of the system of equations at the specified time points for the parameters θ and
initial conditions x0. Figure 1(a) illustrates graphically the conditional dependencies of the overall
statistical model and from this the posterior density follows by employing appropriate priors such
that p(θ,x0,σ|Y) ∝ π(θ)π(x0)π(σ)

∏
nNYn,·(X(θ,x0)n,·, Iσ2

n). The desired marginal p(θ|Y)
can be obtained from this joint posterior2.

Various sampling schemes can be devised to sample from the joint posterior. However, regardless
of the sampling method, each proposal requires the specific solution of the system of differential
equations which, as will be demonstrated in the experimental sections, is the main computational
bottleneck in running an MCMC scheme for models based on differential equations. The computa-
tional complexity of numerically solving such a system cannot be easily quantified since it depends
on many factors such as the type of model and its stiffness, which in turn depends on the specific
parameter values used. A method to alleviate this bottleneck is the main contribution of this paper.

3 Auxiliary Gaussian Processes on State Variables

Let us assume independent3 Gaussian process priors on the state variables such that p(Xn,·|ϕn) =
N (0,Cϕn

), where Cϕn
denotes the matrix of covariance function values with hyperparameters

ϕn. With noise εn ∼ N (0, σ2
nIT ), the state posterior, p(Xn,·|Yn,·, σn,ϕn) follows as N (µn,Σn)

where µn = Cϕn
(Cϕn

+ σ2
nI)−1Yn,· and Σn = σ2

nCϕn
(Cϕn

+ σ2
nI)−1. Given priors π(σn) and

π(ϕn) the corresponding posterior is p(ϕn, σn|Yn,·) ∝ π(σn)π(ϕn)NYn,·(0, σ2
nI + Cϕn

) and
from this we can obtain the joint posterior, p(X, σn=1···N ,ϕn=1···N |Y, ), over a non-parametric
GP model of the state-variables. Note that a non-Gaussian noise model may alternatively be
implemented using warped GPs [14]. The conditional distribution for the state-derivatives is

2This distribution is implicitly conditioned on the numerical solver and associated error tolerances.
3The dependencies between state variables can be modeled by defining the overall state vector as x =

vec(X) and using a GP prior of the form x ∼ N (0,Σ⊗C) where ⊗ denotes the Kronecker matrix product
and Σ is an N ×N positive semi-definite matrix specifying inter-state similarities with C, the T × T matrix
defining intra-state similarities [13].



(a) (b) (c)

Figure 1: (a) Graphical model representing explicit solution of an ODE system, (b) Graphical model rep-
resenting approach developed in this paper with dashed lines showing how the two models are combined in
product form, (c) Likelihood surface for a simple oscillator model

p(Ẋn,·|Xn,·,ϕn, σn) = N (mn,Kn), where the mean and covariance are given by

mn = ′Cϕn
(Cϕn

+ σ2
nI)−1Xn,· and Kn = C

′′

ϕn
− ′Cϕn

(Cϕn
+ σ2

nI)−1C
′

ϕn

where C
′′

ϕn
denotes the auto- covariance for each state- derivative with C

′

ϕn
and ′Cϕn

denoting
the cross- covariances between the state and its derivative [13, 15]. The main advantage of using
the Gaussian process model now becomes apparent. The GP specifies a jointly Gaussian distri-
bution over the function and its derivatives ([13], pg.191). This allows us to evaluate a poste-
rior over parameters θ consistent with the differential equation based on the smoothed state and
state derivative estimates, see Figure 1(b). Assuming Normal errors between the state- derivatives
Ẋn,· and the functional, fn(X, θ, t) evaluated at the GP generated state- values, X corresponding
to time points t = t1 · · · tT then p(Ẋn,·|X, θ, γn) = N (fn(X, θ, t), Iγn) with γn a state- specific
error variance. Both statistical models p(Ẋn,·|Xn,·,ϕn, σn) and p(Ẋn,·|X, θ, γn) can be linked
in the form of a Product of Experts [7] to define the overall density p(Ẋn,·|X, θ, γn,ϕn, σn) ∝
N (mn,Kn)N (fn(X, θ, t), Iγn) [see e.g. 20]. Introducing priors π(θ) and π(γ) =

∏
n π(γn)

p(θ,γ|X, ϕ, σ) =
∫

p(Ẋ, θ,γ|X, ϕ, σ)dẊ

∝ π(θ)π(γ)
∏
n

∫
N (mn,Kn)N (fn(X, θ, t), Iγn)dẊn,·

∝ π(θ)π(γ)∏
nZ(γn)

exp

{
−1

2

∑
n

(fn −mn)T(Kn + Iγn)−1(fn −mn)

}
where fn ≡ fn(X, θ, t), and Z(γn) = |2π(Kn + Iγn)| 12 is a normalizing constant. Since the
gradients appear only linearly and their conditional distribution given X is Gaussian they can be
marginalized exactly. In other words, given observations Y, we can sample from the conditional
distribution for X and marginalize the augmented derivative space. The differential equation need
now never be explicitly solved, its implicit solution is integrated into the sampling scheme.

4 Sampling Schemes for Fully and Partially Observed Systems

The introduction of the auxiliary model and its associated variables has enabled us to recast the
differential equation as another component of the inference process. The relationship between the
auxiliary model and the physical process that we are modeling is shown in Figure 1(b), where the
dotted lines represent a transfer of information between the models. This information transfer takes
place through sampling candidate solutions for the system in the GP model. Inference is performed
by combining these approximate solutions with the system dynamics from the differential equations.
It now remains to define an overall sampling scheme for the structural parameters. For brevity, we



omit normalizing constants and assume that the system is defined in terms of ODEs. However,
our scheme is easily extended for delay differential equations (DDEs) where now predictions at
each time point t and the associated delay (t − τ ) are required — we present results for a DDE
system in Section 5.2. We can now consider the complete sampling scheme by also inferring the
hyperparameters and corresponding predictions of the state variables and derivatives using the GP
framework described in Section 3. We can obtain samples θ from the desired marginal posterior
p(θ|Y)4 by sampling from the joint posterior p(θ,γ,X, ϕ, σ|Y) as follows

ϕn, σn|Yn,· ∼ p(ϕn, σn|Yn,·) ∝ π(σn)π(ϕn)NYn,·(0, σ2
nI + Cϕn

) (1)

Xn,·|Yn,·, σn,ϕn ∼ p(Xn,·|Yn,·, σn,ϕn) = NXn,·(µn,Σn) (2)

θ,γ|X, ϕ, σ ∼ p(θ,γ|X, ϕ, σ) ∝ π(θ)π(γ) exp

{
−1

2

∑
n

δT
n(Kn + Iγn)−1δn

}
(3)

where δn ≡ fn−mn. This requires two Metropolis sampling schemes; one for inferring the param-
eters of the GP, ϕ and σ, and another for the parameters of the structural system, θ and γ. However,
as a consequence of the system induced dynamics the corresponding likelihood surface defined by
p(Y|θ,x0,σ) can present formidable challenges to standard sampling methods. As an example
Figure 1(c) illustrates the induced likelihood surface of a simple dynamic oscillator similar to that
presented in the experimental section. Recent advances in MCMC methodology suggest solutions
to this problem in the form of population-based MCMC methods [8], which we therefore implement
to sample the structural parameters of our model. Population MCMC enables samples to be drawn
from a target density p(θ) by defining a product of annealed densities indexed by a temperature
parameter β, such that p(θ|β) =

∏
i p(θ|βi) and the desired target density p(θ) is defined for one

value of βi. It is convenient to fix a geometric path between the prior and posterior, which we do in
our implementation, although other sequences are possible [3]. A time homogeneous Markov tran-
sition kernel which has p(θ) as its stationary distribution can then be constructed from both local
Metropolis proposal moves and global temperature switching moves between the tempered chains
of the population [8], allowing freer movement within the parameter space.

The computational scaling for each component of the sampler is now considered. Sampling of the
GP covariance function parameters by a Metropolis step requires computation of a matrix deter-
minant and its inverse, so for all N states in the system a dominant scaling of O(NT 3) will be
obtained. This poses little problem for many applications in systems biology since T is often fairly
small (T ≈ 10 to 100). For larger values of T , sparse approximations can offer much improved
computational scaling of order O(NM2T ), where M is the number of time points selected [9].
Sampling from a multivariate Normal whose covariance matrix and corresponding decompositions
have already been computed therefore incurs no dominating additional computational overhead.
The final Metropolis step (Equation 3) requires each of the Kn matrices to be constructed and the
associated determinants and inverses computed thus incurring a total O(NT 3) scaling per sample.

An approximate scheme can be constructed by first obtaining the maximum a posteriori values for
the GP hyperparameters and posterior mean state values, ϕ̂, σ̂, X̂n, and then employing these in
Equation 3. This will provide samples from p(θ,γ|X̂, ϕ̂, σ̂,Y) which may be a useful surrogate
for the full joint posterior incurring lower computational cost as all matrix operations will have been
pre-computed, as will be demonstrated later in the paper.

We can also construct a sampling scheme for the important special case where some states are
unobserved. We partition X into Xo, and Xu. Let o index the observed states, then we may infer all
the unknown variables as follows

p(θ,γ,Xu|Xo,ϕ, σ) ∝ π(θ)π(γ)π(Xu) exp

{
−1

2

∑
n∈o

(δo,u
n )T(Kn + Iγn)−1(δo,u

n )

}
where δo,u

n ≡ fn(Xo,Xu,θ, t) − mn and π(Xu) is an appropriately chosen prior. The values of
unobserved species are obtained by propagating their sampled initial values using the corresponding
discrete versions of the differential equations and the smoothed estimates of observed species. The
p53 transcriptional network example we include requires inference over unobserved protein species,
see Section 5.3.

4Note that this is implicitly conditioned on the class of covariance function chosen.



5 Experimental Examples

We now demonstrate our GP-based method using a standard squared exponential covariance func-
tion on a variety of examples involving both ordinary and delay differential equations, and compare
the accuracy and speed with other state-of-the-art methods.

5.1 Example 1 - Nonlinear Ordinary Differential Equations

We first consider the FitzHugh-Nagumo model [11] which was originally developed to model
the behaviour of spike potentials in the giant axon of squid neurons and is defined as V̇ =
c
(
V − V 3/3 + R

)
, Ṙ = − (V − a + bR) /c. Although consisting of only 2 equations and 3 pa-

rameters, this dynamical system exhibits a highly nonlinear likelihood surface [11], which is induced
by the sharp changes in the properties of the limit cycle as the values of the parameters vary. Such
a feature is common to many nonlinear systems and so this model provides an excellent test for our
GP-based parameter inference method.

Data is generated from the model, with parameters a = 0.2, b = 0.2, c = 3, at {40, 80, 120} time
points with additive Gaussian noise, N(0, v) for v = 0.1 × σn, where σn is the standard deviation
for the nth species. The parameters were then inferred from these data sets using the full Bayesian
sampling scheme and the approximate sampling scheme (Section 4), both employing population
MCMC. Additionally, we inferred the parameters using 2 alternative methods, the profiled estima-
tion method of Ramsay et al. [11] and a Population MCMC based sampling scheme, in which the
ODEs were solved explicitly (Section 2), to complete the comparative study. All the algorithms
were coded in Matlab, and the population MCMC algorithms were run with 30 temperatures, and
used a suitably diffuse Γ(2, 1) prior distribution for all parameters, forming the base distribution for
the sampler. Two of these population MCMC samplers were run in parallel and the R̂ statistic [5]
was used to monitor convergence of all chains at all temperatures. The required numerical approxi-
mations to the ODE were calculated using the Sundials ODE solver, which has been demonstrated to
be considerably (up to 100 times) faster than the standard ODE45/ODE15s solvers commonly used
in Matlab. In our experiments the chains generally converged after around 5000 iterations, and 2000
samples were then drawn to form the posterior distributions. Ramsay’s method [11] was imple-
mented using the Matlab code which accompanies their paper. The optimal algorithm settings were
used, tuned for the FitzHugh-Nagumo model (see [11] for details) which they also investigated. Each
experiment was repeated 100 times, and Table 1 shows summary statistics for each of the inferred
parameters. All of the three sampling methods based on population MCMC produced low variance
samples from posteriors positioned close to the true parameters values. Most noticeable from the
results in Figure 2 is the dramatic speed advantage the GP based methods have over the more direct
approach, whereby the differential equations are solved explicitly; the GP methods introduced in
this paper offer up to a 10-fold increase in speed, even for this relatively simple system of ODEs.
We found the performance of the profiled estimation method [11] to be very sensitive to the initial
parameter values. In practice parameter values are unknown, indeed little may be known even about
the range of possible values they may take. Thus it seems sensible to choose initial values from a
wide prior distribution so as to explore as many regions of parameter space as possible. Employing

FitzHugh-Nagumo ODE Model
Samples Method a b c

40
GP MAP 0.1930 ± 0.0242 0.2070 ± 0.0453 2.9737 ± 0.0802
GP Fully Bayesian 0.1983 ± 0.0231 0.2097 ± 0.0481 3.0133 ± 0.0632
Explicit ODE 0.2015 ± 0.0107 0.2106 ± 0.0385 3.0153 ± 0.0247

80
GP MAP 0.1950 ± 0.0206 0.2114 ± 0.0386 2.9801 ± 0.0689
GP Fully Bayesian 0.2068 ± 0.0194 0.1947 ± 0.0413 3.0139 ± 0.0585
Explicit ODE 0.2029 ± 0.0121 0.1837 ± 0.0304 3.0099 ± 0.0158

120
GP MAP 0.1918 ± 0.0145 0.2088 ± 0.0317 3.0137 ± 0.0489
GP Fully Bayesian 0.1971 ± 0.0162 0.2081 ± 0.0330 3.0069 ± 0.0593
Explicit ODE 0.2071 ± 0.0112 0.2123 ± 0.0286 3.0112 ± 0.0139

Table 1: Summary statistics for each of the inferred parameters of the FitzHugh-Nagumo model. Each exper-
iment was repeated 100 times and the mean parameter values are shown. We observe that all three population-
based MCMC methods converge close to the true parameter values, a = 0.2, b = 0.2 and c = 3.



Figure 2: Summary statistics of the overall time taken for the algorithms to run to completion. Solid bars show
mean time for 100 runs; superimposed boxplots display median results with upper and lower quartiles.

profiled estimation using initial parameter values drawn from a wide gamma prior, however, yielded
highly biased results, with the algorithm often converging to local maxima far from the true param-
eter values. The parameter estimates become more biased as the variance of the prior is increased,
i.e. as the starting points move further from the true parameter values. E.g. consider parameter a;
for 40 data points, for initial values a, b, c ∼ N ({0.2, 0.2, 3}, 0.2), the range of estimated values for
â was [Min, Median, Max] = [0.173, 0.203, 0.235]. For initial values a, b, c ∼ Γ(1, 0.5), the â had
a range [Min, Median, Max] = [−0.329, 0.205, 9.3 × 109] and for a wider prior a, b, c ∼ Γ(2, 1),
then â had range [Min, Median, Max] = [−1.4 × 1010, 0.195, 2.2 × 109]. Lack of robustness
therefore seems to be a significant problem with this profiled estimation method. The speed of the
profiled estimation method was also extremely variable, and this was observed to be very depen-
dent on the initial parameter values e.g. for initial values a, b, c ∼ N ({0.2, 0.2, 3}, 0.2), the times
recorded were [Min, Mean, Max] = [193, 308, 475]. Using a different prior for initial values such
that a, b, c ∼ Γ(1, 0.5), the times were [Min, Mean, Max] = [200, 913, 3265] and similarly for a
wider prior a, b, c ∼ Γ(2, 1), [Min, Mean, Max] = [132, 4171, 37411]. Experiments performed with
noise v = {0.05, 0.2} × σn produced similar and consistent results, however they are omitted due
to lack of space.

5.2 Example 2 - Nonlinear Delay Differential Equations

This example model describes the oscillatory behaviour of the concentration of mRNA and its corre-
sponding protein level in a genetic regulatory network, introduced by Monk [10]. The translocation
of mRNA from the nucleus to the cytosol is explicitly described by a delay differential equation.

dµ

dt
=

1
1 + (p(t− τ)/p0)n

− µmµ
dp

dt
= µ− µpp

where µm and µp are decay rates, p0 is the repression threshold, n is a Hill coefficient and τ is the
time delay. The application of our method to DDEs is of particular interest since numerical solutions
to DDEs are generally much more computationally expensive to obtain than ODEs. Thus inference
of such models using MCMC methods and explicitly solving the system at each iteration becomes
less feasible as the complexity of the system of DDEs increases.

We consider data generated from the above model, with parameters µm = 0.03, µp = 0.03,
p0 = 100, τ = 25, at {40, 80, 120} time points with added random noise drawn from a Gaus-
sian distribution, N(0, v) for v = 0.1 × σn, where σn is the standard deviation of the time-series
data for the nth species. The parameters were then inferred from these data sets using our GP-based
population MCMC methods. Figure 3 shows a time comparison for 10 iterations of the GP sampling
algorithms and compares it to explicitly solving the DDEs using the Matlab solver DDE23 (which
is generally faster than the Sundials solver for DDEs). The GP methods are around 400 times faster
for 40 data points. Using the GP methods, samples from the full posterior can be obtained in less
than an hour. Solving the DDEs explicitly, the population MCMC algorithm would take in excess of
two weeks computation time, assuming the chains take a similar number of iterations to converge.



Monk DDE Model
Samples Method µm µp ×10−3 p0 ×10−3 τ

40 GP MAP 100.21 ± 2.08 29.7 ± 1.6 30.1 ± 0.3 25.65 ± 1.04
GP Full Bayes 99.75 ± 1.50 29.8 ± 1.2 30.1 ± 0.2 25.33 ± 0.85

80 GP MAP 99.48 ± 1.29 29.5 ± 0.9 30.1 ± 0.1 24.81 ± 0.59
GP Full Bayes 100.26 ± 1.03 30.1 ± 0.6 30.1 ± 0.1 24.87 ± 0.44

120 GP MAP 99.91 ± 1.02 30.0 ± 0.5 30.0 ± 0.1 24.97 ± 0.38
GP Full Bayes 100.23 ± 0.92 30.0 ± 0.4 30.0 ± 0.1 25.03 ± 0.25

Table 2: Summary statistics for each of the inferred parameters of the Monk model. Each experiment was
repeated 100 times and we observe that both GP population-based MCMC methods converge close to the true
parameter values, µm = 100, µp = 30 × 10−3 and p0 = 30 × 10−3. The time-delay parameter, τ = 25, is
also successfully inferred.

Figure 3: Summary statistics of the time taken for the algorithms to complete 10 iterations using DDE model.

5.3 Example 3 - The p53 Gene Regulatory Network with Unobserved Species

Our third example considers a linear and a nonlinear model describing the regulation of 5 target
genes by the tumour repressor transcription factor protein p53. We consider the following differen-
tial equations which relate the expression level xj(t) of the jth gene at time t to the concentration of
the transcription factor protein f(t) which regulates it, ẋj = Bj +Sjg(f(t))−Djxj(t), where Bj is
the basal rate of gene j, Sj is the sensitivity of gene j to the transcription factor and Dj is the decay
rate of the mRNA. Letting g(f(t)) = f(t) gives us the linear model originally investigated in [1],
and letting g(f(t)) = exp(f(t)) gives us the nonlinear model investigated in [4]. The transcription
factor f(t) is unobserved and must be inferred along with the other structural parameters Bj , Sj

and Dj using the sampling scheme detailed in Section 4.1. In this experiment, priors on the unob-
served species used were f(t) ∼ Γ(2, 1) with a log-Normal proposal. We test our method using the

(a) Linear Model (b) Nonlinear Model

Figure 4: The predicted output of the p53 gene using data from Barenco et al. [1] and the accelerated GP
inference method for (a) the linear model and (b) the nonlinear response model. Note that the asymmetric error
bars in (b) are due to exp(y) being plotted, as opposed to just y in (a). Our results are compared to the results
obtained by Barenco et al. [1] (shown as crosses) and are comparable to those obtained by Lawrence et al. [4].



leukemia data set studied in [1], which comprises 3 measurements at each of 7 time points for each
of the 5 genes. Figure 4 shows the inferred missing species and the results are in good accordance
with recent biological studies. For this example, our GP sampling algorithms ran to completion in
under an hour on a 2.2GHz Centrino laptop, with no difference in speed between using the linear
and nonlinear models; indeed the equations describing this biological system could be made more
complex with little additional computational cost.

6 Conclusions

Explicit solution of differential equations is a major bottleneck for the application of inferential
methodology in a number of application areas, e.g. systems biology, nonlinear dynamic systems.
We have addressed this problem and placed it within a Bayesian framework which tackles the main
shortcomings of previous solutions to the problem of system identification for nonlinear differential
equations. Our methodology allows the possibility of model comparison via the use of Bayes factors,
which may be straightforwardly calculated from the samples obtained from the population MCMC
algorithm. Possible extensions to this method include more efficient sampling exploiting control
variable methods [17], embedding characteristics of a dynamical system in the design of covariance
functions and application of our method to models involving partial differential equations.
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