Transfer Learning using Kolmogorov Complexity:
Basic Theory and Empirical Evaluations

M. M. Hassan Mahmud Sylvian R. Ray
Department of Computer Science Department of Computer Science
University of lllinois at Urbana-Champaign University of lllinois at Urbana-Champaign
nmmahnud@ui uc. edu ray@s. ui uc. edu

Abstract

In transfer learning we aim to solve new problems using fewer examples using
information gained from solving related problems. Transfer learning has been
successful in practice, and extensive PAC analysis of these methods has been de-
veloped. However it is not yet clear how to define relatedness between tasks. This
is considered as a major problem as it is conceptually troubling and it makes it
unclear how much information to transfer and when and how to transfer it. In
this paper we propose to measure the amount of information one task contains
about another using conditional Kolmogorov complexity between the tasks. We
show how existing theory neatly solves the problem of measuring relatedness and
transferring the ‘right’ amount of information in sequential transfer learning in a
Bayesian setting. The theory also suggests that, in a very formal and precise sense,
no other reasonable transfer method can do much better than our Kolmogorov
Complexity theoretic transfer method, and that sequential transfer is always justi-
fied. We also develop a practical approximation to the method and use it to transfer
information betwee arbitrarily chosen databases from the UCI ML repository.

1 Introduction

The goal of transfer learnirld] is to learn new tasks with fewer examples given information gained
from solving related tasks, with each task corresponding to the distribution/probability measure
generating the samples for that task. The study of transfer is motivated by the fact that people use
knowledge gained from previously solved, related problems to solve new problems quicker. Transfer
learning methods have been successful in practice, for instance it has been used to recognize related
parts of a visual scene in robot navigation tasks, predict rewards in related regions in reinforcement
learning based robot navigation problems, and predict results of related medical tests for the same
group of patients. Figure 1 shows a prototypical transfer mefhbdnd it illustrates some of the

key ideas. Then tasks being learned are defined on the same input space, and are related by virtue
of requiring the same common ‘high level features’ encoded in the hidden units. The tasks are
learned in parallel — i.e. during training, the network is trained by alternating training samples from
the different tasks, and the hope is that now the common high level features will be learned quicker.
Transfer can also be done sequentially where information from tasks learned previously are used to
speed up learning of new ones.

Despite the practical successes, the key question of how one measures relatedness between tasks has,
so far, eluded answer. Most current methods, including the deep PAC theoretic andlgkistart

by assuming that the tasks are related because they have a common near-optimal inductive bias (the
common hidden units in the above example). As no explicit measure of relatedness is prescribed, it
becomes difficult to answer questions such as how much information to transfer between tasks and
when not to transfer information.

Output Layer:
" 1unit for each task
Task specific

Weights

Hidden Layer

Weights shared
amongst tasks

Input Layer

Figure 1: A typical Transfer Learning Method.

There has been some work which attempt to solve these problighggves a more explicit measure

of task relatedness in which two tasksand(are said to be similar with respect to a given set of
functions if the set contains an elemeghnsuch thatP(a) = Q(f(a)) for all eventsa. By assuming

the existence of these functions, the authors are able to derive PAC sample complexity bounds for
error of each task (as opposed to expected error, w.r.t. a distribution overtieks, in[2]). More
interesting is the approach [#], where the author derives PAC bounds in which the sample com-
plexity is proportional to the joinKolmogorov complexit{5] of them hypotheses. So Kolmogorov
complexity (see below) determines the relatedness between tasks. However, the bounds hold only
for > 8192 tasks (Theorem 3).

In this paper we approach the above idea from a Bayesian perspective and measure tasks relatedness
usingconditionalKolmogorov complexity of the hypothesis. We describe the basics of the theory

to show how it justifies this approach and neatly solves the problem of measuring task relatedness
(details in[6; 7]). We then perform experiments to show the effectiveness of this method.

Let us take a brief look at our approach. We assume that each hypothesis is represented by a program
— for example a decision tree is represented by a program that contains a data structure representing
the tree, and the relevant code to compute the leaf node corresponding to a given input vector. The
Kolmogorov complexity of a hypothests(or any other bit string) is now defined as the length of the
shortest program that outpuigyiven no input. This is a measure of absolute information content of
anindividual object- in this case the hypothedis It can be shown that Kolmogorov complexity is

a sharper version of Information Theoretic entropy, which measures the amount of information in an
ensemble of objectsith respect to aistributionover the ensemble. The conditional Kolmogorov
complexity of hypothesi& givenh’, K (h|h'), is defined as the length of the shortest program that
outputs the prograrh given’’ as input. K (h|h') measures the amount odnstructivenformation

h' contains about — how much informatiorh’ contains for the purpose of constructihg This

is precisely what we wish to measure in transfer learning. Hence this becomes our measure of
relatedness for performing sequential transfer learning in the Bayesian setting.

In the Bayesian setting, any sequential transfer learning mechanism/algorithm is ‘just’ a conditional
prior W (-|h") over the hypothesis/probability measure space, whieiethe task learned previously

—i.e. the task we are trying to transfer information from. In this case, by setting the prior over the
hypothesis space to be(-|n’) := 2-XCI"") we weight each candidate hypothesis by how related it

is to previous tasks, and so we automatically transfer the right amount of information when learning
the new problem. We show that in a certain precise sense this prior is never much worse than
anyreasonabldransfer learning prior, or any non-transfer prior. So, sequential transfer learning is
always justified from a theoretical perspective. This result is quite unexpected as the current belief
in the transfer learning community is that it should hurt to transfer from unrelated tasks. Due to
lack of space, we only just briefly note that similar results hold for an appropriate interpretation of
parallel transfer, and that, translated to the Bayesian setting, current practical transfer methods look
like sequential transfer methof; 7]. Kolmogorov complexity is computable only in the limit (i.e.

with infinite resources), and so, while ideal for investigating transfer in the limit, in practice we need
to use an approximation of it (s¢&l for a good example of this). In this paper we perform transfer

in Bayesian decision trees by using a fairly simple approximation tatte ") prior.

In the rest of the paper we proceed as follows. In section 3 we define Kolmogorov complexity more
precisely and state all the relevant Bayesian convergence results for making the claims above. We
then describe our Kolmogorov complexity based Bayesian transfer learning method. In section 4
we describe our method for approximation of the above using Bayesian decision trees, and then in
section 5 we describ&2 transfer experiments usirtystandard databases from the UCI machine
learning repository9]. Our experiments are the most general that we know of, in the sense that we

transfer between arbitrary databases with little or no séimeglationships. We note that this fact
also makes it difficult to compare our method to other existing methods (see also section 6).

2 Preliminaries

We consider Bayesian transfer learning for finite input spdgesd finite output spaceas;. We
assume finite hypothesis spadés where eaclh € H; is a conditional probability measure @h,
conditioned on elements @. So fory € O; andx € Z;, h(y|x) gives the probability of output
beingy given inputz. GivenD,, = {(z1,y1), (z2,92), - , (xn,yn)} fromZ; x O,, the probability
of D,, according toh € H; is given by:

h(Dy) = [hyklzr)
k=1

The conditional probability of a new samgle, ..., ynew) € Z; x O; for any conditional probability
measureg: (e.g.h € H; or My, in (3.2)) is given by:

,U,(Dn U {(Ineuu ynew)})
ne n,l)aDn =
H(Ynew|Tnew, Dn) (D)

So the learning problem is: given a training samplg, where for eachzy,yx) € D, yi IS
assumed to have been chosen accordingea H;, learnh. The prediction problem is to predict

the label of the new sample,.,, using (2.1). The probabilities for the inputsare not included

above because they cancel out. This is merely the standard Bayesian setting, translated to a typical
Machine learning setting (e.g10]).

2.1)

We use MCMC simulations in a computer to sample for our Bayesian learners, and so considering
only finite spaces above is acceptable. However, the theory we present here holds for any hypothesis,
input and output space that may be handled by a computer with infinite resourcési(s&a for

more precise descriptions). Note that we are considering cross-domain tfdds our standard

setting (see section 6). We further assume that éaeh’; is a program (therefore a bit string)

for some Universal prefix Turing machiié When it is clear that a particular symhobenotes a
program, we will writep(z) to denoteJ (p, x), i.e. running prograrp on inputz.

3 Transfer Learning using Kolmogorov Complexity

3.1 Kolmogorov Complexity based Task Relatedness

A program is a bit string, and a measure of absotidestructiveinformation that a bit string:
contains about another bit striggs given by the conditional Kolmogorov complexity @fgiveny

[5] . Since our hypotheses are programs/bit strings, the amount of information that a hypothesis or
programh’ contains about constructing another hypothésisalso given by the same:

Definition 1. The conditional Kolmogorov complexity bfe H; givenh’ € H; is defined as the
length of the shortest program that given the prograhnas input, outputs the program

K(h|h') = mgn{l(r) :r(h') =h}

We will use a minimality property ofC’. Let f(x,y) be a computable function over product of bit
strings. f is computable means that there is a proggasuch thaip(z, n), n € N, computesf (z)

to accuracy: < 27" in finite time. Now assume that(z, y) satisfies for each >~ 2=F(=v) < 1.
Then for a constant; = K(f) + O(1), independent af andy, butdependent od (f), the length
of shortest program computinfy and some small constant (0) [5, Corollary 4.3.1:

K(zly) < f(z,y) + ¢y 3.1
3.2 Bayesian Convergence Results

A Bayes mixtureMy, over’H; is defined as follows:

My (Dy) ==Y h(D,)W(h) with Y~ W(h) <1 (3.2)
heH,; heH,;

(the inequality is sufficient for the convergence result)wiassume that the data has been gener-
ated by ah; € H; (this is standard for a Bayesian setting, but we will relax this constraint below).
Then the foIIowing impressive result holds true for egehy) € Z; x O;.

ZZh) [Mw (ylz, D) = hj(yla, Dp)]* < —In W (hy). (3.3)

t=0 D,,
So for finite— In W (h;), convergence is rapid; the expected number of timédlyy (a|z, D,,) —
hj(alz,D,)| > €is < —InW(h;)/e?, and the probability that the number efdeviations
> —InW(h;)/€* is < 6. This result was first proved ifL4], and extended variously ifi1;
12]. In essence these results hold as long{asan be enumerated aig andW can be computed
with infinite resources. These results also hold jif¢ H;, butEh; € H; such that thex! order
KL divergence betweeh; and?’; is bounded bys. In this case the error boundisln W () + k

[11, section 2.6 Now conS|der the Solomonoff-Levin prio~ % (") — this has (3.3) error bound
K (h)1n2, and for any computable prid#’(-), f(z,y) :== —In W()/ In 2 satisfies conditions for
f(z,y)in (3.1). So by (3.3), withy = the empty string, we get:
K(h)In2 < —InW(h) + cw (3.4)

By (3.3), this means that for all € 7;, the error bound for the—% (") prior can be no more than a
constant worse than the error bound for any other prior. Since reasonable priors havk Siviall
(= O(1)), ew = O(1) and this prior isuniversally optima[11, section 5.B

3.3 Bayesian Transfer Learning

Assume we have previously observed/learned 1 tasks, with task; € H;,, and them!” task to

be learned is it{;, . Lett := (t1,t2,--- ,t;m—1). In the Bayesian framework, a transfer learning
scheme corresponds to a computable prigf|t) over the spacet; ,
> Wi(hlt) <1
heHMn

In this case, by (3.3), the error bound of the transfer learning sciié¢meddefined by the prioil/)
is — In W (h|t). We define our transfer learning methdf}-; by choosing the prio2—*t):

Mrpp(Dy) =Y h(Dp)2” 500,
heH,,

For My, the error bound ig{ (h|t) In 2. By the minimality property (3.1), we get that
K(hjt)In2 < —InW(h[t) + cw

So for a reasonable computable transfer learning schefipecyy = O(1) and for allk andt, the

error bound forM 7, is no more than a constant worse than the error boundfgr — i.e. My,

is universally optima[11, section 5.8 Also note that in genera (z|y) < K(x)*. Therefore by

(3.4) the transfer learning schemé;;, is also universally optimal over all non-transfer learning
schemes —i.e. in the precise formal sense of the framework in this paper, sequential transfer learning
is always justified. The result in this section, while novel, areteciinically deegsee alsd6] [12,

section). We should also note that tiee () prior is not universally optimal with respect to

the transfer prioiV (-[t) because the inequality (3.4) now holds only upto the constgnt,

which depends o (t). So this constant increases with increasing number of tasks which is very
undesirable. Indeed, this is demonstrated in our experiments when the base classifier used is an
approximation to the = (") prior and the error of this prior is seen to be significantly higher than

the transfer learning priar— X (2lt),

4 Practical Approximation using Decision Trees

Since K is computable only in the limit, to apply the above ideas in practical situations, we need
to approximate’ and hencellr,. Furthermore we also need to specify the spag¢gs);,Z; and
how to sample from the approximation &fr;,. We address each issue in turn.

!Becausewrg K (), with a constant length modification, also outputgiven inputy.

4.1 Decision Trees

We will consider standard binary decision trees as our hypotheses. Each hypothesid space
sists of decision trees f@F; defined by the sef; of features. A treé € H, is defined recursively:

h =100

R . J J J
nj:=7r;C;00[r;Cjny 0|r; C;dny|r; C;jn] nj,

C is a vector of sizéO;|, with componenC; giving the probability of thé*” class. Each rule is

of the form f < v, wheref € f; andwv is a value forf. The vectorC is used during classification
only when the corresponding node has one or nficckildren. The size of each tree #c, where

N is the number of nodes, ang is a constant, denoting the size of each rule entry, the outgoing
pointers, andC. Sincec, and the length of the program cogg for computing the tree output are
constants independent of the tree, we define the length of a tiék)as- V.

4.2 Approximating K and the Prior 2-%([t)

Approximation for a single previously learned tre¥le will approximateK (-|-) using a function
that is defined for a single previously learned tree as follows:

Cra(h|W) == 1(h) — d(h, W)

whered(h, k') is the maximum number of overlapping nodes starting from the root nodes:
d(h,h'") = d(Droot, Nlyyy) d(n,0) :=0
d(n,n’) :=1+d(ng,n}) + d(ng,n’) d(®,n’):=0

In the single task case, the prior is jist!(®) /Z; (which is an approximation to the Solomonoff-

Levin prior 2-5()), and in the transfer learning case, the priogig’ (") /Z ~where theZs

are normalization terms In both cases, we can sample from the prior directly by growing the
decision tree dynamically. Callfain 4 a hole. Then foe—'("), during the generation process, we

first generate an integéraccording t®2~* distribution (easy to do using a pseudo random number
generator). Then at each step we select a hole uniformly at random and then create a node there
(with two more holes) and generate the corresponding rule randomly. We do so until we get a tree
with [(k) = k. In the transfer learning case, for the priorC(1h) we first generate an integér
according t2~¢ distribution. Then we generate as above until we get aitragh Cyy(h|h') = k.

It can be seen with a little thought that these procedures sample from the respective priors.

Approximation for multiple previously learned tredde defineC; for multiple trees as an averag-
ing of the contributions of each of the — 1 previously learned trees:

m—1
m _ 1 —Cra(hm|hi)
Cll(hmlhi, hay -+ hm—1) := —log (m_lgg 1

In the transfer learning case, we need to sample accodifig) /Z¢» which reduces ta/[(m—
1) Zcpm] St o Cualhmlhi) To sample from this, we can simply selectafrom them — 1 trees

at random and then sample fram©: (1" to get the new tree.
The transfer learning mixtureThe approximation of the transfer learning mixtueg-, is now:

PTL(Dn): Z h(Dn)27Cm(h|t)/ZC{g
hGHi,m

So by (3.3), the error bound fdtr;, is given byC} (h|t) In2 + 1n Z¢,, (theln Z¢,, is a constant
that is same for alt € H;). So when using’]’;, universality is maintained, but only up to the degree
thatC? approximatesk. In our experiments we used the priof05~-¢ instead of2~¢ above to
make larger trees more likely and hence speed up convergence of MCMC sampling.

>The Z’s exist, here because thés are finite, and in general because= N¢o + [(po) gives lengths of
programs, which are known to satis}y . 27k <1,

Table 1: Metropolis-Hastings Algorithm

1. Let D,, be the training sample; select the current tree/state using the proposal distributig
q(heur).
2. Fori=1toJ do

(a) Choose a candidate next statg,, according to the proposal distributigiihprop).
(b) Draww uniformly at random fronf0, 1] and seticur := hprop if A(Rprop, Reur) > u, where

A is defined by
—C(hlt) (17
A(h,h') := min?{ 1, M(Dn)2 S a(h)
(D)2~ T g (n)

>

4.3 Approximating Pry, using Metropolis-Hastings

As in standard Bayesian MCMC methods, the idea will be to dvasamples,,,, from the poste-
rior, P(h|D,,, t) which is given by

m

P(h|Dy, t) := h(Dn)27qd(hlt)/(ZC{SjP(Dn))

Then we will approximatér;, by
N

Pro(yla) = 5 3 o (vle)

i=1

We will use the standard Metropolis-Hastings algorithm to sample fRom (see[15] for a brief
introduction and further references). The algorithm is given in table 1. The algorithm is first run for
someJ = T, to get the Markov chaig x A to converge, and then starting from the las}, in

the run, the algorithm is run again fdr= N times to getV samples fotPr;,. In our experiments

we set7 to 1000 and N = 50. We setq to our prior2~“i(*) /Z.., and hence the acceptance
probability A is reduced tanin{1, h(D,,)/h'(D,)}. Note that every time after we generate a tree
according ta, we set theC entries using the training samplg, in the usual way.

5 Experiments

We used databases from the UCI machine learning reposit@lyn our experiments (table 2). To

show transfer of information we us&d% of the data for a task as the training sample, but also
used as prior knowledge trees learned on another task 86figof the data as training sample.

The reported error rates are on the testing sets and are averagd$) ouas . To the best of our
knowledge our transfer experiments are the most general performed so far, in the sense that the
databases information is transferred between have semantic relationship that is often tenuous.

We performed3 sets of experiments. In the first set we learned each classifier 88#gf the

data as training sample aRd% as testing sample (since it is a Bayesian method, we did not use

a validation sample-set). This set ensured that our base Bayesian classifi@r{ithprior is
reasonably powerful and that any improvement in performance in the transfer experiments (set 3)
was due to transfer and not deficiency in our base classifier. From a survey of literature it seems
the error rate for our classifier is always at least a couple of percentage points better than C4.5. As
an example, foecoliour classifier outperforms Adaboost and Random Foredtsdn but is a bit

worse than these f@erman Credit.

In the second set of experiments we learned the databases that we are going to transfee@¥using

of the database as training sample, &0t of the data as the testing sample. This was done to
establish baseline performance for the transfer learning case. The third and final set of experiments
were performed to do the actual transfer. In this case, first one task was learned0gng30%
training, 20% testing) data set and then this was used to le&®y/&80 dataset. During transfer, the

N trees from the sampling of tH&®/20 task were all used in the pri@~C7 (1Y), The results are

Table 2: Database summary. The last column gives the errostamdiard deviation for 80/20
database split.

Data Set No. of Samples No. of Feats. No. Classes Error/S.D|
Ecoli 336 7 8 9.8%, 3.48
Yeast 1484 8 10 14.8%, 2.0
Mushroom 8124 22 2 0.83%,0.71
Australian Credit 690 14 2 16.6%, 3.75
German Credit 1000 20 2 28.2%,4.5
Hepatitis 155 19 2 18.86%, 2.03
Breast Cancer,Wisc. 699 9 2 5.6%,1.9
Heart Disease, Cleve. 303 14 5 23.0%, 2.56

given in table 3. In our experiments, we transferred only skg$ahat showed a significant drop in
error rate with the0/80 split. Surprisingly, the error of the other data sets did not change much.

As can be seen from comparing the tables, in most cases transfer of information improves the per-
formance compared to the baseline transfer caseecat, the transfer resulted in improvement to
near80/20 levels, while foraustralianthe improvement was better thaf/20. While the error rate

for mushroomandbc-wiscdid not move up t@0/20 levels, there was improvement. Interestingly

transfer learning did not hurt in one single case, which agrees with our theoretical results in the
idealized setting.

Table 3: Results of2 transfer experimentdransfer ToandFrom rows gives databases information

is transferred to and from. The roMo-Transfergives the baseline0/80 error-rate and standard
deviation. RowTransfergives the error rate and standard deviation after transfer, and the final row
Pl gives percentage improvement in performance due to transfer. With our admittedly inefficient
code, each experiment took betwedén- 60 seconds on 8.4 GHz laptop with512 MB RAM.

Trans. To ecoli Australian
Trans. From Yeast Germ. BC Wisc Germ. ecoli hep.
No-Transfer | 20.6%,3.8 | 20.6%, 3.8 20.6%, 3.8 23.2%, 2.4 23.2%, 2.4 23.2%,2.4
Transfer 11.3%,1.6 | 10.2%,4.74 | 9.68%,2.98 | 15.47%,0.67 | 15.43%,1.2 | 15.21%,0.42
Pl 45.1% 49% 53% 33.0% 33.5% 34.4%
Trans. To mushroom BC Wisc.
Trans. From ecoli BC Wisc. Germ. heart Aus. ecoli
No-Transfer | 13.8%,1.3 | 13.8%,1.3 | 13.8%,1.3 10.3%, 1.6 10.3%, 1.6 10.3%, 1.6
Transfer 4.6%,0.17 | 4.64%,0.21 | 3.89%,1.02 | 8.3%,0.93 | 8.1%,1.22 7.8%,2.03
PI 66.0% 66.0% 71.8% 19.4% 21.3% 24.3%

6 Discussion

In this paper we introduced a Kolmogorov Complexity theoretic framework for Transfer Learn-
ing. The theory is universally optimal and elegant, and we showed its practical applicability
by constructing approximations to it to transfer information across disparate domains in stan-
dard UCI machine learning databases. The full theoretical development can be fol@d in

7]. Directions for future empirical investigations are many. We did not consider transferring from
multiple previous tasks, and effect of size of source samples on transfer performancer (Using

etc. as the sources) or transfer in regression. Due to the general nature of our method, we can
perform transfer experiments between any combination of databases in the UCI repository. We

also wish to perform experiments using more powerful germalsimilarity functions like the gzip
compressof8]3.

We also hope that it is clear that Kolmogorov complexity based approach elegantly solves the prob-
lem of cross-domain transfer, where we transfer information between tasks that are defined over
different input,output and distribution spaces. To the best of our knowledge, the first paper to ad-
dress this wa13], and recent works includéd 7] and[18]. All these methods transfer information

by finding structural similarity between various networks/rule that form the hypotheses. This is,
of course, a way to measure constructive similarity between the hypotheses, and hence an approx-
imation to Kolmogorov complexity based similarity. So Kolmogorov complexity elegantly unifies
these ideas. Additionally, the above methods, particularly the last two, are rather elaborate and are
hypothesis space specifid g is even task specific). The theory of Kolmogorov complexity and its
practical approximations such E8] and this paper suggests that we can get good performance by
just using generalized compressors, such as gzip, etc., to measure similarity.

Acknowledgments

We would like to thank Kiran Lakkaraju for their comments and Samarth Swarup for many fruitful
disucssions.

References

[1] Rich Caruana. Multitask learninddachine Learning, 28:41-75, 1997.

[2] Jonathan Baxter. A model of inductive bias learnidgurnal of Artificial Intelligence Research, 12:149—
198, March 2000.

[3] ShaiBen-David and Reba Schuller. Exploiting task relatedness for learning multiple taBkscéedings
of the16'" Annual Conference on Learning Theory, 2003.

[4] Brendan Juba. Estimating relatedness via data compressioRroteedings of the3™ International
Conference on Machine Learning, 2006.

[5] Ming Li and Paul Vitanyi. An Introduction to Kolmogorov Complexity and its Applicatior8pringer-
Verlag, New York, 2nd edition, 1997.

[6] M. M. Hassan Mahmud. On universal transfer learningPlaceedings of th@8™ International Confer-
ence on Algorithmic Learning Theory, 2007.

[71 M. M. Hassan Mahmud. On universal transfer learning (Under Review). 2008.

[8] R. Cilibrasi and P. Vitanyi. Clustering by compressiofEEE Transactions on Information theory,
51(4):1523-1545, 2004.

[9] D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of ML databases, 1998.

[10] Radford M. Neal. Bayesian methods for machine learning, NIPS tutorial, 2004.

[11] Marcus Hutter. Optimality of Bayesian universal prediction for general loss and alphatetal of
Machine Learning Research, 4:971-1000, 2003.

[12] Marcus Hutter. On universal prediction and bayesian confirmatiimeoretical Computer Science (in
press), 2007.

[13] Samarth Swarup and Sylvian R. Ray. Cross domain knowledge transfer using structured representations.
In Proceedings of the1® National Conference on Atrtificial Intelligence (AAAPOOG.

[14] R.J. Solomonoff. Complexity-based induction systems: comparisons and convergence théBEEns.
Transactions on Information Theory, 24(4):422—-432, 1978.

[15] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael |. Jordan. An introduction to MCMC
for machine learningMachine Learning, 50(1-2):5-43, 2003.

[16] Leo Breiman. Random forestMachine Learning, 45:5-32, 2001.

[17] Lilyana Mihalkova, Tuyen Huynh, and Raymond Mooney. Mapping and revising markov logic networks
for transfer learning. IfProceedings of the2" National Conference on Artificial Intelligence (AAAI
2007.

[18] Matthew Taylor and Peter Stone. Cross-domain transfer for reinforcement learniRyodeedings of
the24" International Conference on Machine Learning, 2007.

3A flavor of this approach: if the standard compressor is gzip, then the funCtiop(xy) will give the
length of the stringcy after compression by gzigly.:p(xy) — Cyzip(y) Will be the conditionalCy.:p (z|y).
S0C,.ip(h|h") will give the relatedness between tasks.

