
Transfer Learning using Kolmogorov Complexity:
Basic Theory and Empirical Evaluations

M. M. Hassan Mahmud
Department of Computer Science

University of Illinois at Urbana-Champaign
mmmahmud@uiuc.edu

Sylvian R. Ray
Department of Computer Science

University of Illinois at Urbana-Champaign
ray@cs.uiuc.edu

Abstract

In transfer learning we aim to solve new problems using fewer examples using
information gained from solving related problems. Transfer learning has been
successful in practice, and extensive PAC analysis of these methods has been de-
veloped. However it is not yet clear how to define relatedness between tasks. This
is considered as a major problem as it is conceptually troubling and it makes it
unclear how much information to transfer and when and how to transfer it. In
this paper we propose to measure the amount of information one task contains
about another using conditional Kolmogorov complexity between the tasks. We
show how existing theory neatly solves the problem of measuring relatedness and
transferring the ‘right’ amount of information in sequential transfer learning in a
Bayesian setting. The theory also suggests that, in a very formal and precise sense,
no other reasonable transfer method can do much better than our Kolmogorov
Complexity theoretic transfer method, and that sequential transfer is always justi-
fied. We also develop a practical approximation to the method and use it to transfer
information between8 arbitrarily chosen databases from the UCI ML repository.

1 Introduction

The goal of transfer learning[1] is to learn new tasks with fewer examples given information gained
from solving related tasks, with each task corresponding to the distribution/probability measure
generating the samples for that task. The study of transfer is motivated by the fact that people use
knowledge gained from previously solved, related problems to solve new problems quicker. Transfer
learning methods have been successful in practice, for instance it has been used to recognize related
parts of a visual scene in robot navigation tasks, predict rewards in related regions in reinforcement
learning based robot navigation problems, and predict results of related medical tests for the same
group of patients. Figure 1 shows a prototypical transfer method[1], and it illustrates some of the
key ideas. Them tasks being learned are defined on the same input space, and are related by virtue
of requiring the same common ‘high level features’ encoded in the hidden units. The tasks are
learned in parallel – i.e. during training, the network is trained by alternating training samples from
the different tasks, and the hope is that now the common high level features will be learned quicker.
Transfer can also be done sequentially where information from tasks learned previously are used to
speed up learning of new ones.

Despite the practical successes, the key question of how one measures relatedness between tasks has,
so far, eluded answer. Most current methods, including the deep PAC theoretic analysis in[2], start
by assuming that the tasks are related because they have a common near-optimal inductive bias (the
common hidden units in the above example). As no explicit measure of relatedness is prescribed, it
becomes difficult to answer questions such as how much information to transfer between tasks and
when not to transfer information.

1

Figure 1: A typical Transfer Learning Method.

There has been some work which attempt to solve these problems.[3] gives a more explicit measure
of task relatedness in which two tasksP andQ are said to be similar with respect to a given set of
functions if the set contains an elementf such thatP (a) = Q(f(a)) for all eventsa. By assuming
the existence of these functions, the authors are able to derive PAC sample complexity bounds for
error of each task (as opposed to expected error, w.r.t. a distribution over them tasks, in[2]). More
interesting is the approach in[4], where the author derives PAC bounds in which the sample com-
plexity is proportional to the jointKolmogorov complexity[5] of them hypotheses. So Kolmogorov
complexity (see below) determines the relatedness between tasks. However, the bounds hold only
for ≥ 8192 tasks (Theorem 3).

In this paper we approach the above idea from a Bayesian perspective and measure tasks relatedness
usingconditionalKolmogorov complexity of the hypothesis. We describe the basics of the theory
to show how it justifies this approach and neatly solves the problem of measuring task relatedness
(details in[6; 7]). We then perform experiments to show the effectiveness of this method.

Let us take a brief look at our approach. We assume that each hypothesis is represented by a program
– for example a decision tree is represented by a program that contains a data structure representing
the tree, and the relevant code to compute the leaf node corresponding to a given input vector. The
Kolmogorov complexity of a hypothesish (or any other bit string) is now defined as the length of the
shortest program that outputsh given no input. This is a measure of absolute information content of
an individual object– in this case the hypothesish. It can be shown that Kolmogorov complexity is
a sharper version of Information Theoretic entropy, which measures the amount of information in an
ensemble of objectswith respect to adistributionover the ensemble. The conditional Kolmogorov
complexity of hypothesish givenh′, K(h|h′), is defined as the length of the shortest program that
outputs the programh givenh′ as input.K(h|h′) measures the amount ofconstructiveinformation
h′ contains abouth – how much informationh′ contains for the purpose of constructingh. This
is precisely what we wish to measure in transfer learning. Hence this becomes our measure of
relatedness for performing sequential transfer learning in the Bayesian setting.

In the Bayesian setting, any sequential transfer learning mechanism/algorithm is ‘just’ a conditional
prior W (·|h′) over the hypothesis/probability measure space, whereh′ is the task learned previously
– i.e. the task we are trying to transfer information from. In this case, by setting the prior over the
hypothesis space to beP (·|h′) := 2−K(·|h′) we weight each candidate hypothesis by how related it
is to previous tasks, and so we automatically transfer the right amount of information when learning
the new problem. We show that in a certain precise sense this prior is never much worse than
any reasonabletransfer learning prior, or any non-transfer prior. So, sequential transfer learning is
always justified from a theoretical perspective. This result is quite unexpected as the current belief
in the transfer learning community is that it should hurt to transfer from unrelated tasks. Due to
lack of space, we only just briefly note that similar results hold for an appropriate interpretation of
parallel transfer, and that, translated to the Bayesian setting, current practical transfer methods look
like sequential transfer methods[6; 7]. Kolmogorov complexity is computable only in the limit (i.e.
with infinite resources), and so, while ideal for investigating transfer in the limit, in practice we need
to use an approximation of it (see[8] for a good example of this). In this paper we perform transfer
in Bayesian decision trees by using a fairly simple approximation to the2−K(·|·) prior.

In the rest of the paper we proceed as follows. In section 3 we define Kolmogorov complexity more
precisely and state all the relevant Bayesian convergence results for making the claims above. We
then describe our Kolmogorov complexity based Bayesian transfer learning method. In section 4
we describe our method for approximation of the above using Bayesian decision trees, and then in
section 5 we describe12 transfer experiments using8 standard databases from the UCI machine
learning repository[9]. Our experiments are the most general that we know of, in the sense that we

2

transfer between arbitrary databases with little or no semantic relationships. We note that this fact
also makes it difficult to compare our method to other existing methods (see also section 6).

2 Preliminaries

We consider Bayesian transfer learning for finite input spacesIi and finite output spacesOi. We
assume finite hypothesis spacesHi, where eachh ∈ Hi is a conditional probability measure onOi,
conditioned on elements ofIi. So fory ∈ Oi andx ∈ Ii, h(y|x) gives the probability of output
beingy given inputx. GivenDn = {(x1, y1), (x2, y2), · · · , (xn, yn)} from Ii ×Oi, the probability
of Dn according toh ∈ Hi is given by:

h(Dn) :=

n
∏

k=1

h(yk|xk)

The conditional probability of a new sample(xnew, ynew) ∈ Ii×Oi for any conditional probability
measureµ (e.g.h ∈ Hi or MW in (3.2)) is given by:

µ(ynew|xnew, Dn) :=
µ(Dn ∪ {(xnew, ynew)})

µ(Dn)
(2.1)

So the learning problem is: given a training sampleDn, where for each(xk, yk) ∈ Dn yk is
assumed to have been chosen according ah ∈ Hi, learnh. The prediction problem is to predict
the label of the new samplexnew using (2.1). The probabilities for the inputsx are not included
above because they cancel out. This is merely the standard Bayesian setting, translated to a typical
Machine learning setting (e.g.[10]).

We use MCMC simulations in a computer to sample for our Bayesian learners, and so considering
only finite spaces above is acceptable. However, the theory we present here holds for any hypothesis,
input and output space that may be handled by a computer with infinite resources (see[11; 12] for
more precise descriptions). Note that we are considering cross-domain transfer[13] as our standard
setting (see section 6). We further assume that eachh ∈ Hi is a program (therefore a bit string)
for some Universal prefix Turing machineU . When it is clear that a particular symbolp denotes a
program, we will writep(x) to denoteU(p, x), i.e. running programp on inputx.

3 Transfer Learning using Kolmogorov Complexity

3.1 Kolmogorov Complexity based Task Relatedness

A program is a bit string, and a measure of absoluteconstructiveinformation that a bit stringx
contains about another bit stringy is given by the conditional Kolmogorov complexity ofx giveny
[5] . Since our hypotheses are programs/bit strings, the amount of information that a hypothesis or
programh′ contains about constructing another hypothesish is also given by the same:
Definition 1. The conditional Kolmogorov complexity ofh ∈ Hj givenh′ ∈ Hi is defined as the
length of the shortest program that given the programh′ as input, outputs the programh.

K(h|h′) := min
r

{l(r) : r(h′) = h}

We will use a minimality property ofK. Let f(x, y) be a computable function over product of bit
strings.f is computable means that there is a programp such thatp(x, n), n ∈ N, computesf(x)
to accuracyǫ < 2−n in finite time. Now assume thatf(x, y) satisfies for eachy

∑

x 2−f(x,y) ≤ 1.
Then for a constantcf = K(f) + O(1), independent ofx andy, butdependent onK(f), the length
of shortest program computingf , and some small constant (O(1)) [5, Corollary 4.3.1]:

K(x|y) ≤ f(x, y) + cf (3.1)

3.2 Bayesian Convergence Results

A Bayes mixtureMW overHi is defined as follows:

MW (Dn) :=
∑

h∈Hi

h(Dn)W (h) with
∑

h∈Hi

W (h) ≤ 1 (3.2)

3

(the inequality is sufficient for the convergence results). Now assume that the data has been gener-
ated by ahj ∈ Hi (this is standard for a Bayesian setting, but we will relax this constraint below).
Then the following impressive result holds true for each(x, y) ∈ Ii ×Oi.

∞
∑

t=0

∑

Dn

hj(Dn)[MW (y|x,Dn) − hj(y|x,Dn)]2 ≤ − lnW (hj). (3.3)

So for finite− lnW (hj), convergence is rapid; the expected number of timesn |MW (a|x,Dn) −
hj(a|x,Dn)| > ǫ is ≤ − ln W (hj)/ǫ2, and the probability that the number ofǫ deviations
> − lnW (hj)/ǫ2δ is < δ. This result was first proved in[14], and extended variously in[11;
12]. In essence these results hold as long asHi can be enumerated andhj andW can be computed
with infinite resources. These results also hold ifhj 6∈ Hi, but∃h′

j ∈ Hi such that thenth order
KL divergence betweenhj andh′

j is bounded byk. In this case the error bound is− ln W (h′
j) + k

[11, section 2.5]. Now consider the Solomonoff-Levin prior:2−K(h) – this has (3.3) error bound
K(h) ln 2, and for any computable priorW (·), f(x, y) := − ln W (x)/ ln 2 satisfies conditions for
f(x, y) in (3.1). So by (3.3), withy = the empty string, we get:

K(h) ln 2 ≤ − lnW (h) + cW (3.4)

By (3.3), this means that for allh ∈ Hi, the error bound for the2−K(h) prior can be no more than a
constant worse than the error bound for any other prior. Since reasonable priors have smallK(W)
(= O(1)), cW = O(1) and this prior isuniversally optimal[11, section 5.3].

3.3 Bayesian Transfer Learning

Assume we have previously observed/learnedm − 1 tasks, with tasktj ∈ Hij
, and themth task to

be learned is inHim
. Let t := (t1, t2, · · · , tm−1). In the Bayesian framework, a transfer learning

scheme corresponds to a computable priorW (·|t) over the spaceHim
,

∑

h∈Him

W (h|t) ≤ 1

In this case, by (3.3), the error bound of the transfer learning schemeMW (defined by the priorW)
is − lnW (h|t). We define our transfer learning methodMTL by choosing the prior2−K(·|t):

MTL(Dn) :=
∑

h∈Him

h(Dn)2−K(h|t).

ForMTL the error bound isK(h|t) ln 2. By the minimality property (3.1), we get that
K(h|t) ln 2 ≤ − lnW (h|t) + cW

So for a reasonable computable transfer learning schemeMW , cW = O(1) and for allh andt, the
error bound forMTL is no more than a constant worse than the error bound forMW – i.e. MTL

is universally optimal[11, section 5.3]. Also note that in generalK(x|y) ≤ K(x)1. Therefore by
(3.4) the transfer learning schemeMTL is also universally optimal over all non-transfer learning
schemes – i.e. in the precise formal sense of the framework in this paper, sequential transfer learning
is always justified. The result in this section, while novel, are nottechnically deep(see also[6] [12,
section 6]). We should also note that the2−K(h) prior is not universally optimal with respect to
the transfer priorW (·|t) because the inequality (3.4) now holds only upto the constantcW (·|t)

which depends onK(t). So this constant increases with increasing number of tasks which is very
undesirable. Indeed, this is demonstrated in our experiments when the base classifier used is an
approximation to the2−K(h) prior and the error of this prior is seen to be significantly higher than
the transfer learning prior2−K(h|t).

4 Practical Approximation using Decision Trees

SinceK is computable only in the limit, to apply the above ideas in practical situations, we need
to approximateK and henceMTL. Furthermore we also need to specify the spacesHi,Oi, Ii and
how to sample from the approximation ofMTL. We address each issue in turn.

1Becausearg K(x), with a constant length modification, also outputsx given inputy.

4

4.1 Decision Trees

We will consider standard binary decision trees as our hypotheses. Each hypothesis spaceHi con-
sists of decision trees forIi defined by the setfi of features. A treeh ∈ Hi is defined recursively:

h := nroot

nj := rj Cj ∅ ∅ | rj Cj n
j
L ∅ | rj Cj ∅ n

j
R | rj Cj n

j
L n

j
R

C is a vector of size|Oi|, with componentCi giving the probability of theith class. Each ruler is
of the formf < v, wheref ∈ fi andv is a value forf . The vectorC is used during classification
only when the corresponding node has one or more∅ children. The size of each tree isNc0 where
N is the number of nodes, andc0 is a constant, denoting the size of each rule entry, the outgoing
pointers, andC. Sincec0 and the length of the program codep0 for computing the tree output are
constants independent of the tree, we define the length of a tree asl(h) := N .

4.2 Approximating K and the Prior 2−K(·|t)

Approximation for a single previously learned tree:We will approximateK(·|·) using a function
that is defined for a single previously learned tree as follows:

Cld(h|h
′) := l(h) − d(h, h′)

whered(h, h′) is the maximum number of overlapping nodes starting from the root nodes:

d(h, h′) := d(nroot,n
′
root) d(n, ∅) := 0

d(n,n′) := 1 + d(nL,n′
L) + d(nR,n′

R) d(∅,n′) := 0

In the single task case, the prior is just2−l(h)/Zl (which is an approximation to the Solomonoff-
Levin prior 2−K(·)), and in the transfer learning case, the prior is2−Cld(·|h′)/ZCld

where theZs
are normalization terms2. In both cases, we can sample from the prior directly by growing the
decision tree dynamically. Call a∅ in h a hole. Then for2−l(h), during the generation process, we
first generate an integerk according to2−t distribution (easy to do using a pseudo random number
generator). Then at each step we select a hole uniformly at random and then create a node there
(with two more holes) and generate the corresponding rule randomly. We do so until we get a tree
with l(h) = k. In the transfer learning case, for the prior2−Cld(·|h′) we first generate an integerk
according to2−t distribution. Then we generate as above until we get a treeh with Cld(h|h

′) = k.
It can be seen with a little thought that these procedures sample from the respective priors.

Approximation for multiple previously learned trees:We defineCld for multiple trees as an averag-
ing of the contributions of each of them − 1 previously learned trees:

Cm
ld (hm|h1, h2, · · · , hm−1) := − log

(

1

m − 1

m−1
∑

i=1

2−Cld(hm|hi)

)

In the transfer learning case, we need to sample according2−Cm
ld (·|·)/ZCm

ld
which reduces to1/[(m−

1)ZCm
ld

]
∑m−1

i=1 2−Cld(hm|hi). To sample from this, we can simply select ahi from them − 1 trees
at random and then sample from2−Cld(·|hi) to get the new tree.

The transfer learning mixture:The approximation of the transfer learning mixtureMTL is now:

PTL(Dn) =
∑

h∈Him

h(Dn)2−Cm
ld (h|t)/ZCm

ld

So by (3.3), the error bound forPTL is given byCm
ld (h|t) ln 2 + lnZCld

(the lnZCld
is a constant

that is same for allh ∈ Hi). So when usingCm
ld , universality is maintained, but only up to the degree

thatCm
ld approximatesK. In our experiments we used the prior1.005−C instead of2−C above to

make larger trees more likely and hence speed up convergence of MCMC sampling.
2TheZ ’s exist, here because theHs are finite, and in general becauseki = Nc0 + l(p0) gives lengths of

programs, which are known to satisfy
∑

i
2−ki ≤ 1.

5

Table 1: Metropolis-Hastings Algorithm

1. Let Dn be the training sample; select the current tree/statehcur using the proposal distribution
q(hcur).

2. Fori = 1 to J do

(a) Choose a candidate next statehprop according to the proposal distributionq(hprop).
(b) Drawu uniformly at random from[0, 1] and sethcur := hprop if A(hprop, hcur) > u, where

A is defined by

A(h, h
′) := min

{

1,
h(Dn)2−Cm

ld (h|t)q(h′)

h′(Dn)2−Cm
ld

(h′|t)q(h)

}

4.3 Approximating PTL using Metropolis-Hastings

As in standard Bayesian MCMC methods, the idea will be to drawN sampleshmi
from the poste-

rior, P (h|Dn, t) which is given by

P (h|Dn, t) := h(Dn)2−Cm
ld (h|t)/(ZCm

ld
P (Dn))

Then we will approximatePTL by

P̂TL(y|x) :=
1

N

N
∑

i=1

hmi
(y|x)

We will use the standard Metropolis-Hastings algorithm to sample fromPTL (see[15] for a brief
introduction and further references). The algorithm is given in table 1. The algorithm is first run for
someJ = T , to get the Markov chainq × A to converge, and then starting from the lasthcur in
the run, the algorithm is run again forJ = N times to getN samples forP̂TL. In our experiments
we setT to 1000 andN = 50. We setq to our prior2−Cm

ld (·|t)/ZCm
ld

, and hence the acceptance
probabilityA is reduced tomin{1, h(Dn)/h′(Dn)}. Note that every time after we generate a tree
according toq, we set theC entries using the training sampleDn in the usual way.

5 Experiments

We used8 databases from the UCI machine learning repository[9] in our experiments (table 2). To
show transfer of information we used20% of the data for a task as the training sample, but also
used as prior knowledge trees learned on another task using80% of the data as training sample.
The reported error rates are on the testing sets and are averages over10 runs . To the best of our
knowledge our transfer experiments are the most general performed so far, in the sense that the
databases information is transferred between have semantic relationship that is often tenuous.

We performed3 sets of experiments. In the first set we learned each classifier using80% of the
data as training sample and20% as testing sample (since it is a Bayesian method, we did not use
a validation sample-set). This set ensured that our base Bayesian classifier with2−l(h) prior is
reasonably powerful and that any improvement in performance in the transfer experiments (set 3)
was due to transfer and not deficiency in our base classifier. From a survey of literature it seems
the error rate for our classifier is always at least a couple of percentage points better than C4.5. As
an example, forecoli our classifier outperforms Adaboost and Random Forests in[16], but is a bit
worse than these forGerman Credit.

In the second set of experiments we learned the databases that we are going to transfer to using20%
of the database as training sample, and80% of the data as the testing sample. This was done to
establish baseline performance for the transfer learning case. The third and final set of experiments
were performed to do the actual transfer. In this case, first one task was learned using80/20 (80%
training,20% testing) data set and then this was used to learn a20/80 dataset. During transfer, the
N trees from the sampling of the80/20 task were all used in the prior2−CN

ld(·|t). The results are

6

Table 2: Database summary. The last column gives the error andstandard deviation for 80/20
database split.

Data Set No. of Samples No. of Feats. No. Classes Error/S.D.

Ecoli 336 7 8 9.8%, 3.48
Yeast 1484 8 10 14.8%, 2.0

Mushroom 8124 22 2 0.83%, 0.71
Australian Credit 690 14 2 16.6%, 3.75
German Credit 1000 20 2 28.2%, 4.5

Hepatitis 155 19 2 18.86%, 2.03
Breast Cancer,Wisc. 699 9 2 5.6%, 1.9
Heart Disease, Cleve. 303 14 5 23.0%, 2.56

given in table 3. In our experiments, we transferred only to tasks that showed a significant drop in
error rate with the20/80 split. Surprisingly, the error of the other data sets did not change much.

As can be seen from comparing the tables, in most cases transfer of information improves the per-
formance compared to the baseline transfer case. Forecoli, the transfer resulted in improvement to
near80/20 levels, while foraustralianthe improvement was better than80/20. While the error rate
for mushroomandbc-wiscdid not move up to80/20 levels, there was improvement. Interestingly
transfer learning did not hurt in one single case, which agrees with our theoretical results in the
idealized setting.

Table 3: Results of12 transfer experiments.Transfer ToandFrom rows gives databases information
is transferred to and from. The rowNo-Transfergives the baseline20/80 error-rate and standard
deviation. RowTransfergives the error rate and standard deviation after transfer, and the final row
PI gives percentage improvement in performance due to transfer. With our admittedly inefficient
code, each experiment took between15 − 60 seconds on a2.4 GHz laptop with512 MB RAM.

Trans. To ecoli Australian
Trans. From Yeast Germ. BC Wisc Germ. ecoli hep.

No-Transfer 20.6%, 3.8 20.6%, 3.8 20.6%, 3.8 23.2%, 2.4 23.2%, 2.4 23.2%, 2.4
Transfer 11.3%, 1.6 10.2%, 4.74 9.68%, 2.98 15.47%, 0.67 15.43%, 1.2 15.21%, 0.42

PI 45.1% 49% 53% 33.0% 33.5% 34.4%

Trans. To mushroom BC Wisc.
Trans. From ecoli BC Wisc. Germ. heart Aus. ecoli

No-Transfer 13.8%, 1.3 13.8%, 1.3 13.8%, 1.3 10.3%, 1.6 10.3%, 1.6 10.3%, 1.6
Transfer 4.6%, 0.17 4.64%, 0.21 3.89%, 1.02 8.3%, 0.93 8.1%, 1.22 7.8%, 2.03

PI 66.0% 66.0% 71.8% 19.4% 21.3% 24.3%

6 Discussion

In this paper we introduced a Kolmogorov Complexity theoretic framework for Transfer Learn-
ing. The theory is universally optimal and elegant, and we showed its practical applicability
by constructing approximations to it to transfer information across disparate domains in stan-
dard UCI machine learning databases. The full theoretical development can be found in[6;
7]. Directions for future empirical investigations are many. We did not consider transferring from
multiple previous tasks, and effect of size of source samples on transfer performance (using70/30
etc. as the sources) or transfer in regression. Due to the general nature of our method, we can
perform transfer experiments between any combination of databases in the UCI repository. We

7

also wish to perform experiments using more powerful generalized similarity functions like the gzip
compressor[8]3.

We also hope that it is clear that Kolmogorov complexity based approach elegantly solves the prob-
lem of cross-domain transfer, where we transfer information between tasks that are defined over
different input,output and distribution spaces. To the best of our knowledge, the first paper to ad-
dress this was[13], and recent works include[17] and[18]. All these methods transfer information
by finding structural similarity between various networks/rule that form the hypotheses. This is,
of course, a way to measure constructive similarity between the hypotheses, and hence an approx-
imation to Kolmogorov complexity based similarity. So Kolmogorov complexity elegantly unifies
these ideas. Additionally, the above methods, particularly the last two, are rather elaborate and are
hypothesis space specific ([18] is even task specific). The theory of Kolmogorov complexity and its
practical approximations such as[8] and this paper suggests that we can get good performance by
just using generalized compressors, such as gzip, etc., to measure similarity.

Acknowledgments

We would like to thank Kiran Lakkaraju for their comments and Samarth Swarup for many fruitful
disucssions.

References

[1] Rich Caruana. Multitask learning.Machine Learning, 28:41–75, 1997.
[2] Jonathan Baxter. A model of inductive bias learning.Journal of Artificial Intelligence Research, 12:149–

198, March 2000.
[3] Shai Ben-David and Reba Schuller. Exploiting task relatedness for learning multiple tasks. InProceedings

of the16th Annual Conference on Learning Theory, 2003.
[4] Brendan Juba. Estimating relatedness via data compression. InProceedings of the23rd International

Conference on Machine Learning, 2006.
[5] Ming Li and Paul Vitanyi. An Introduction to Kolmogorov Complexity and its Applications. Springer-

Verlag, New York, 2nd edition, 1997.
[6] M. M. Hassan Mahmud. On universal transfer learning. InProceedings of the18th International Confer-

ence on Algorithmic Learning Theory, 2007.
[7] M. M. Hassan Mahmud. On universal transfer learning (Under Review). 2008.
[8] R. Cilibrasi and P. Vitanyi. Clustering by compression.IEEE Transactions on Information theory,

51(4):1523–1545, 2004.
[9] D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of ML databases, 1998.
[10] Radford M. Neal. Bayesian methods for machine learning, NIPS tutorial, 2004.
[11] Marcus Hutter. Optimality of Bayesian universal prediction for general loss and alphabet.Journal of

Machine Learning Research, 4:971–1000, 2003.
[12] Marcus Hutter. On universal prediction and bayesian confirmation.Theoretical Computer Science (in

press), 2007.
[13] Samarth Swarup and Sylvian R. Ray. Cross domain knowledge transfer using structured representations.

In Proceedings of the21st National Conference on Artificial Intelligence (AAAI), 2006.
[14] R. J. Solomonoff. Complexity-based induction systems: comparisons and convergence theorems.IEEE

Transactions on Information Theory, 24(4):422–432, 1978.
[15] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. An introduction to MCMC

for machine learning.Machine Learning, 50(1-2):5–43, 2003.
[16] Leo Breiman. Random forests.Machine Learning, 45:5–32, 2001.
[17] Lilyana Mihalkova, Tuyen Huynh, and Raymond Mooney. Mapping and revising markov logic networks

for transfer learning. InProceedings of the22nd National Conference on Artificial Intelligence (AAAI,
2007.

[18] Matthew Taylor and Peter Stone. Cross-domain transfer for reinforcement learning. InProceedings of
the24th International Conference on Machine Learning, 2007.

3A flavor of this approach: if the standard compressor is gzip, then the functionCgzip(xy) will give the
length of the stringxy after compression by gzip.Cgzip(xy) − Cgzip(y) will be the conditionalCgzip(x|y).
SoCgzip(h|h′) will give the relatedness between tasks.

8

