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Abstract

Automatic relevance determination (ARD) and the closely-related sparse
Bayesian learning (SBL) framework are effective tools for pruning large numbers
of irrelevant features leading to a sparse explanatory subset. However, popular up-
date rules used for ARD are either difficult to extend to more general problems of
interest or are characterized by non-ideal convergence properties. Moreover, it re-
mains unclear exactly how ARD relates to more traditional MAP estimation-based
methods for learning sparse representations (e.g., the Lasso). This paper furnishes
an alternative means of expressing the ARD cost function using auxiliary func-
tions that naturally addresses both of these issues. First, the proposed reformu-
lation of ARD can naturally be optimized by solving a series of re-weighted `1

problems. The result is an efficient, extensible algorithm that can be implemented
using standard convex programming toolboxes and is guaranteed to converge to
a local minimum (or saddle point). Secondly, the analysis reveals that ARD is
exactly equivalent to performing standard MAP estimation in weight space using
a particular feature- and noise-dependent, non-factorial weight prior. We then
demonstrate that this implicit prior maintains several desirable advantages over
conventional priors with respect to feature selection. Overall these results suggest
alternative cost functions and update procedures for selecting features and promot-
ing sparse solutions in a variety of general situations. In particular, the method-
ology readily extends to handle problems such as non-negative sparse coding and
covariance component estimation.

1 Introduction

Here we will be concerned with the generative model
y = Φx + ε, (1)

where Φ ∈ R
n×m is a dictionary of features, x ∈ R

m is a vector of unknown weights, y is an
observation vector, and ε is uncorrelated noise distributed as N (ε; 0, λI). When large numbers
of features are present relative to the signal dimension, the estimation problem is fundamentally
ill-posed. Automatic relevance determination (ARD) addresses this problem by regularizing the
solution space using a parameterized, data-dependent prior distribution that effectively prunes away
redundant or superfluous features [10]. Here we will describe a special case of ARD called sparse
Bayesian learning (SBL) that has been very successful in a variety of applications [15]. Later in
Section 4 we will address extensions to more general models.
The basic ARD prior incorporated by SBL is p(x;γ) = N (x; 0, diag[γ]), where γ ∈ R

m
+ is a vector

of m non-negative hyperperparameters governing the prior variance of each unknown coefficient.
These hyperparameters are estimated from the data by first marginalizing over the coefficients x

and then performing what is commonly referred to as evidence maximization or type-II maximum
likelihood [7, 10, 15]. Mathematically, this is equivalent to minimizing

L(γ) , − log

∫

p(y|x)p(x;γ)dx = − log p(y;γ) ≡ log |Σy| + y
T Σ−1

y y, (2)
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where a flat hyperprior on γ is assumed, Σy , λI + ΦΓΦT , and Γ , diag[γ]. Once some γ∗ =
arg minγ L(γ) is computed, an estimate of the unknown coefficients can be obtained by setting
xARD to the posterior mean computed using γ∗:

xARD = E[x|y;γ∗] = Γ∗Φ
T Σ−1

y∗ y. (3)
Note that if any γ∗,i = 0, as often occurs during the learning process, then xARD,i = 0 and the
corresponding feature is effectively pruned from the model. The resulting weight vector xARD is
therefore sparse, with nonzero elements corresponding with the ‘relevant’ features.
There are (at least) two outstanding issues related to this model which we consider to be significant.
First, while several methods exist for optimizing (2), limitations remain in each case. For example,
an EM version operates by treating the unknown x as hidden data, leading to the E-step

Σ , Cov[x|y;γ] = Γ − ΓΦT Σ−1
y ΦΓ, µ , E[x|y;γ] = ΓΦT Σ−1

y y, (4)
and the M-step

γi → µ2
i + Σii, ∀i = 1, . . . ,m. (5)

While convenient to implement, the convergence can be prohibitively slow in practice. In contrast,
the MacKay update rules are considerably faster to converge [15]. The idea here is to form the
gradient of (2), equate to zero, and then form the fixed-point update

γi →
µ2

i

1 − γ−1
i Σii

, ∀i = 1, . . . ,m. (6)

However, neither the EM nor MacKay updates are guaranteed to converge to a local minimum or
even a saddle point of L(γ); both have fixed points whenever a γi = 0, whether at a minimizing
solution or not. Finally, a third algorithm has recently been proposed that optimally updates a single
hyperparameter γi at a time, which can be done very efficiently in closed form [16]. While extremely
fast to implement, as a greedy-like method it can sometimes be more prone to becoming trapped in
local minima when the number of features is large, e.g., m > n (results will be presented in a
forthcoming publication). Additionally, none of these methods are easily extended to more general
problems such as non-negative sparse coding, covariance component estimation, and classification
without introducing additional approximations.
A second issue pertaining to the ARD model involves its connection with more traditional maximum
a posteriori (MAP) estimation methods for extracting sparse, relevant features using fixed, sparsity
promoting prior distributions (i.e., heavy-tailed and peaked). Presently, it is unclear how ARD,
which invokes a parameterized prior and transfers the estimation problem to hyperparameter space,
relates to MAP approaches which operate directly in x space. Nor is it intuitively clear why ARD
often works better in selecting optimal feature sets.
This paper introduces an alternative formulation of the ARD cost function using auxiliary func-
tions that naturally addresses the above issues. In Section 2, the proposed reformulation of ARD is
conveniently optimized by solving a series of re-weighted `1 problems. The result is an efficient al-
gorithm that can be implemented using standard convex programming methods and is guaranteed to
converge to a local minimum (or saddle point) of L(γ). Section 3 then demonstrates that ARD is ex-
actly equivalent to performing standard MAP estimation in weight space using a particular feature-
and noise-dependent, non-factorial weight prior. We then show that this implicit prior maintains
several desirable advantages over conventional priors with respect to feature selection. Additionally,
these results suggest modifications of ARD for selecting relevant features and promoting sparse so-
lutions in a variety of general situations. In particular, the methodology readily extends to handle
problems involving non-negative sparse coding, covariance component estimation, and classification
as discussed in Section 4.

2 ARD/SBL Optimization via Iterative Re-Weighted Minimum `1

In this section we re-express L(γ) using auxiliary functions which leads to an alternative update
procedure that circumvents the limitations of current approaches. In fact, a wide variety of alterna-
tive update rules can be derived by decoupling L(γ) using upper bounding functions that are more
conveniently optimized. Here we focus on a particular instantiation of this idea that leads to an
iterative minimum `1 procedure. The utility of this selection being that many powerful convex pro-
gramming toolboxes have already been developed for solving these types of problems, especially
when structured dictionaries Φ are being used.



2.1 Algorithm Derivation

To start we note that the log-determinant term of L(γ) is concave in γ (see Section 3.1.5 of [1]),
and so can be expressed as a minimum over upper-bounding hyperplanes via

log |Σy| = min
z

z
T
γ − g∗(z), (7)

where g∗(z) is the concave conjugate of log |Σy| that is defined by the duality relationship [1]
g∗(z) = min

γ

z
T
γ − log |Σy| , (8)

although for our purposes we will never actually compute g∗(z). This leads to the following upper-
bounding auxiliary cost function

L(γ, z) , z
T
γ − g∗(z) + y

T Σ−1
y y ≥ L(γ). (9)

For any fixed γ, the optimal (tightest) bound can be obtained by minimizing over z. The optimal
value of z equals the slope at the current γ of log |Σy|. Therefore, we have

zopt = Oγ log |Σy| = diag
[

ΦT Σ−1
y Φ

]

. (10)
This formulation naturally admits the following optimization scheme:

Step 1: Initialize each zi, e.g., zi = 1,∀i.
Step 2: Solve the minimization problem

γ → arg min
γ

Lz(γ) , z
T
γ + y

T Σ−1
y y. (11)

Step 3: Compute the optimal z using (10).
Step 4: Iterate Steps 2 and 3 until convergence to some γ∗.
Step 5: Compute xARD = E[x|y;γ∗] = Γ∗Φ

T Σ−1
y∗ y.

Lemma 1. The objective function in (11) is convex.

This can be shown using Example 3.4 and Section 3.2.2 in [1]. Lemma 1 implies that many standard
optimization procedures can be used for the minimization required by Step 2. For example, one
attractive option is to convert the problem to an equivalent least absolute shrinkage and selector
operator or ‘Lasso’ [14] optimization problem according to the following:
Lemma 2. The objective function in (11) can be minimized by solving the weighted convex `1-
regularized cost function

x∗ = arg min
x

‖y − Φx‖2
2 + 2λ

∑

i

z
1/2
i |xi| (12)

and then setting γi → z
−1/2
i |x∗,i| for all i (note that each zi will always be positive).

The proof of Lemma 2 can be briefly summarized using a re-expression of the data dependent term
in (11) using

y
T Σ−1

y y = min
x

1

λ
‖y − Φx‖2

2 +
∑

i

x2
i

γi
. (13)

This leads to an upper-bounding auxiliary function for Lz(γ) given by

Lz(γ,x) ,
∑

i

(

ziγi +
x2

i

γi

)

+
1

λ
‖y − Φx‖2

2 ≥ Lz(γ), (14)

which is jointly convex in x and γ (see Example 3.4 in [1]) and can be globally minimized by
solving over γ and then x. For any x, γi = z

−1/2
i |xi| minimizes Lz(γ,x). When substituted into

(14) we obtain (12). When solved for x, the global minimum of (14) yields the global minimum of
(11) via the stated transformation.
In summary then, by iterating the above algorithm using Lemma 2 to implement Step 2, a conve-
nient optimization method is obtained. Moreover, we do not even need to globally solve for x (or
equivalently γ) at each iteration as long as we strictly reduce (11) at each iteration. This is read-
ily achievable using a variety of simple strategies. Additionally, if z is initialized to a vector of
ones, then the starting point (assuming Step 2 is computed in full) is the exact Lasso estimator. The
algorithm then refines this estimate through the specified re-weighting procedure.



2.2 Global Convergence Analysis

Let A(·) denote a mapping that assigns to every point in R
m
+ the subset of R

m
+ which satisfies

Steps 2 and 3 of the proposed algorithm. Such a mapping can be implemented via the methodology
described above. We allow A(·) to be a point-to-set mapping to handle the case where the global
minimum of (11) is not unique, which could occur, for example, if two columns of Φ are identical.
Theorem 1. From any initialization point γ(0) ∈ R

m
+ the sequence of hyperparameter estimates

{γ(k)} generated via γ(k+1) ∈ A(γ(k+1)) is guaranteed to converge monotonically to a local mini-
mum (or saddle point) of (2).

The proof is relatively straightforward and stems directly from the Global Convergence Theorem
(see for example [6]). A sketch is as follows: First, it must be shown that the the mapping A(·)
is compact. This condition is satisfied because if any element of γ is unbounded, L(γ) diverges to
infinity. If fact, for any fixed y, Φ and λ, there will always exist a radius r such that for any ‖γ(0)‖ ≤
r, ‖γ(k)‖ ≤ r for all k. Second, we must show that for any non-minimizing point of L(γ) denoted
γ
′, L(γ′′) < L(γ′) for all γ

′′ ∈ A(γ′). At any non-minimizing γ
′ the auxiliary cost function

Lz′(γ) obtained from Step 3 will be strictly tangent to L(γ) at γ
′. It will therefore necessarily have

a minimum elsewhere since the slope at γ
′ is nonzero by definition. Moreover, because the log | · |

function is strictly concave, at this minimum the actual cost function will be reduced still further.
Consequently, the proposed updates represent a valid descent function. Finally, it must be shown
that A(·) is closed at all non-stationary points. This follows from related arguments. The algorithm
could of course theoretically converge to a saddle point, but this is rare and any minimal perturbation
leads to escape.
Both EM and MacKay updates provably fail to satisfy one or more of the above criteria and so global
convergence cannot be guaranteed. With EM, the failure occurs because the associated updates do
not always strictly reduce L(γ). Rather, they only ensure that L(γ ′′) ≤ L(γ′) at all points. In
contrast, the MacKay updates do not even guarantee cost function decrease. Consequently, both
methods can become trapped at a solution such as γ = 0; a fixed point of the updates but not a
stationary point or local minimum of L(γ). However, in practice this seems to be more of an issue
with the MacKay updates. Related shortcomings of EM in this regard can be found in [19]. Finally,
the fast Tipping updates could potentially satisfy the conditions for global convergence, although
this matter is not discussed in [16].

3 Relating ARD to MAP Estimation

In hierarchical models such as ARD and SBL there has been considerable debate over how to best
perform estimation and inference [8]. Do we add a hyperprior and then integrate out γ and perform
MAP estimation directly on x? Or is it better to marginalize over the coefficients x and optimize the
hyperparameters γ as we have described in this paper? In specific cases, arguments have been made
for the merits of one over the other based on intuition or heuristic arguments [8, 15]. But we would
argue that this distinction is somewhat tenuous because, as we will now show using ideas from the
previous section, the weights obtained from the ARD type-II ML procedure can equivalently be
viewed as arising from an explicit MAP estimate in x space. This notion is made precise as follows:
Theorem 2. Let x

2 , [x2
1, . . . , x

2
m]T and γ

−1 , [γ−1
1 , . . . , γ−1

m ]T . Then the ARD coefficients
from (3) solve the MAP problem

xARD = arg min
x

‖y − Φx‖2
2 + λh∗(x2), (15)

where h∗(x2) is the concave conjugate of h(γ−1) , − log |Σy| and is a concave, non-decreasing
function of x.

This result can be established using much of the same analysis used in previous sections. Omitting
some details for the sake of brevity, using (13) we can create a strict upper bounding auxiliary
function on L(γ):

L(γ,x) =
1

λ
‖y − Φx‖2

2 +
∑

i

x2
i

γi
+ log |Σy|. (16)

If we optimize first over γ instead of x (allowable), the last two terms form the stated concave
conjugate function h∗(x2). In turn, the minimizing x, which solves (15), is identical to that obtained
by ARD. The concavity of h∗(x2) with respect each |xi| follows from similar ideas.



Corollary 1. The regularization term in (15), and hence the implicit prior distribution on x given
by p(x) ∝ exp[− 1

2h∗(x2)], is not generally factorable, meaning p(x) 6=
∏

i pi(xi). Addition-
ally, unlike traditional MAP procedures (e.g., Lasso, ridge regression, etc.), this prior is explicitly
dependent on both the dictionary Φ and the regularization term λ.

This result stems directly from the fact that h(γ−1) is non-factorable and is dependent on Φ and
λ. The only exception occurs when ΦT Φ = I; here h∗(x2) factors and can be expressed in closed
form independently of Φ, although λ dependency remains.

3.1 Properties of the implicit ARD prior

To begin at the most superficial level, the Φ dependency of the ARD prior leads to scale invariant
solutions, meaning the value of xARD is not affected if we rescale Φ, i.e., Φ → ΦD, where D is a
diagonal matrix. Rather, any rescaling D only affects the implicit initialization of the algorithm, not
the shape of the cost function.
More significantly, the ARD prior is particularly well-designed for finding sparse solutions. We
should note that concave, non-decreasing regularization functions are well-known to encourage
sparse representations. Since h∗(x2) is such a function, it should therefore not be surprising that it
promotes sparsity to some degree. However, when selecting highly sparse subsets of features, the
factorial `0 quasi-norm is often invoked as the ideal regularization term given unlimited computa-
tional resources. It is expressed via ‖x‖0 ,

∑

i I[xi 6= 0], where I[·] denotes the indicator function,
and so represents a count of the number of nonzero coefficients (and therefore features). By applying
a exp[−1/2(·)] transformation, we obtain the implicit (improper) prior distribution. The associated
MAP estimation problem (assuming the same standard Gaussian likelihood) involves solving

min
x

‖y − Φx‖2
2 + λ‖x‖0. (17)

The difficulty here is that (17) is nearly impossible to solve in general; it is NP-hard owing to a
combinatorial number of local minima and so the traditional idea is to replace ‖ · ‖0 with a tractable
approximation. For this purpose, the `1 norm is the optimal or tightest convex relaxation of the `0

quasi-norm, and therefore it is commonly used leading to the Lasso algorithm [14]. However, the
`1 norm need not be the best relaxation in general. In Sections 3.2 and 3.3 we demonstrate that
the non-factorable, λ-dependent h∗(x2) provides a tighter, albeit non-convex, approximation that
promotes greater sparsity than ‖x‖1 while conveniently producing many fewer local minima than
using ‖x‖0 directly. We also show that, in certain settings, no λ-independent, factorial regularization
term can achieve similar results. Consequently, the widely used family of `p quasi-norms, i.e.,
‖x‖p ,

∑

i |xi|
p, p < 1 [2], or the Gaussian entropy measure

∑

i log |xi| based on the Jeffreys
prior [4] provably fail in this regard.

3.2 Benefits of λ dependency

To explore the properties of h∗(x2) regarding λ dependency alone, we adopt the simplifying as-
sumption ΦT Φ = I . (Later we investigate the benefits of a non-factorial prior.) In this special case,
h∗(x2) is factorable and can be expressed in closed form via

h∗(x2) =
∑

i

h∗(x2
i ) ∝

∑

i

2|xi|

|xi| +
√

x2
i + 4λ

+ log

(

2λ + x2
i + |xi|

√

x2
i + 4λ

)

, (18)

which is independent of Φ. A plot of h∗(x2
i ) is shown in Figure 1 (left) below.

The λ dependency is retained however and contributes two very desirable properties: (i) As a strictly
concave function of each |xi|, h∗(x2) more closely approximates the `0 quasi-norm than the `1 norm
while, (ii) The associated cost function (15) is unimodal unlike when λ-independent approximations,
e.g., the `p quasi-norm, are used. This can be explained as follows. When λ is small, the Gaussian
likelihood is highly restrictive, constraining most of its relative mass to a very localized region of x

space. Therefore, a tighter prior more closely resembling the `0 quasi-norm can be used without the
risk of local minima, which occur when the spines of a sparse prior overlap non-negligible portions
of the likelihood (see Figure 6 in [15] for a good 2D visual of a sparse prior with characteristic spines
running alone the coordinate axis). In the limit as λ → 0, h∗(x2) converges to a scaled version of the



`0 quasi-norm, yet no local minimum exist because the likelihood in this case only permits a single
feasible solution with x = ΦT

y. In contrast, when λ is large, the likelihood is less constrained and a
looser prior is required to avoid local minima troubles, which will arise whenever the now relatively
diffuse likelihood intersects the sharp spines of a highly sparse prior. In this situation h∗(x2) more
closely resembles a scaled version of the `1 norm. The implicit ARD prior naturally handles this
transition becoming sparser as λ decreases and vice versa. Hence the following property, which is
easy to show [18]:
Lemma 3. When ΦT Φ = I , (15) has no local minima whereas (17) has 2M local minima.

Use of the `1 norm in place of h∗(x2) also yields no local minima; however, it is a much looser
approximation of `0 and penalizes coefficients linearly unlike h∗(x2). The benefits of λ dependency
in this regard can be formalized and will be presented in a subsequent paper. As a final point of
comparison, the actual weight estimate obtained from solving (15) when ΦT Φ = I is equivalent to
the non-negative garrote estimator that has been advocated for wavelet shrinkage [5, 18].
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Figure 1: Left: 1D example of the implicit ARD prior. The `1 and `0 norms are included for com-
parison. Right: Plot of the ARD prior across the feasible region as parameterized by α. A factorial
prior given by − log p(x) ∝

∑

i |xi|
0.01 ≈ ‖x‖0 is included for comparison. Both approximations

to the `0 norm retain the correct global minimum, but only ARD smooths out local minima.

3.3 Benefits of a non-factorial prior

In contrast, the benefits the typically non-factorial nature of h∗(x2) are most pronounced when
m > n, meaning there are more features than the signal dimension y. In a noiseless setting (with
λ → 0), we can explicitly quantify the potential of this property of the implicit ARD prior. In this
limiting situation, the canonical sparse MAP estimation problem (17) reduces to finding

x0 , arg min
x

‖x‖0 s.t. y = Φx. (19)

By simple extension of results in [18], the global minimum of (15) in the limit as λ → 0 will
equal x0, assuming the latter is unique. The real distinction then is regarding the number of local
minimum. In this capacity the ARD MAP problem is superior to any possible factorial variant:
Theorem 3. In the limit as λ → 0 and assuming m > n, no factorial prior p(x) =
∏

i exp[−1/2fi(xi)] exists such that the corresponding MAP problem minx ‖y − Φx‖2
2 +

λ
∑

i fi(xi) is: (i) Always globally minimized by a maximally sparse solution x0 and, (ii) Has
fewer local minima than when solving (15).

A sketch of the proof is as follows. First, for any factorial prior and associated regularization term
∑

i fi(xi), the only way to satisfy (i) is if ∂fi(xi)/∂xi → ∞ as xi → 0. Otherwise, it will always be
possible to have a Φ and y such that x0 is not the global minimum. It is then straightforward to show
that any fi(xi) with this property will necessarily have between

[(

m−1
n

)

+ 1,
(

m
n

)]

local minimum.
Using results from [18], this is provably an upper bound on the number of local minimum to (15).
Moreover, with the exception of very contrived situations, the number of ARD local minima will
be considerably less. In general, this result speaks directly to the potential limitations of restricting
oneself to factorial priors when maximal feature pruning is paramount.
While generally difficult to visualize, in restricted situations it is possible to explicitly illustrate
the type of smoothing over local minima that is possible using non-factorial priors. For example,



consider the case where m = n + 1 and Rank(Φ) = n, implying that Φ has a null-space dimension
of one. Consequently, any feasible solution to y = Φx can be expressed as x = x

′ + αv, where
v ∈ Null(Φ), α is any real-valued scalar, and x

′ is any fixed, feasible solution (e.g., the minimum
norm solution). We can now plot any prior distribution p(x), or equivalently − log p(x), over the
1D feasible region of x space as a function of α to view the local minima profile.
To demonstrate this idea, we chose n = 10, m = 11 and generated a Φ matrix using iid N (0, 1)
entries. We then computed y = Φx0, where ‖x0‖0 = 9 and nonzero entries are also iid unit
Gaussian. Figure 1 (right) displays the plots of two example priors in the feasible region of y = Φx:
(i) the non-factorial implicit ARD prior, and (ii) the prior p(x) ∝ exp(− 1

2

∑

i |xi|
p), p = 0.01. The

later is a factorial prior which converges to the ideal sparsity penalty when p → 0. From the figure,
we observe that, while both priors peak at the x0, the ARD prior has substantially smoothed away
local minima. While the implicit Lasso prior (which is equivalent to the assumption p = 1) also
smooths out local minima, the global minimum may be biased away from the maximally sparse
solution in many situations, unlike the ARD prior which provides a non-convex approximation with
its global minimum anchored at x0.

4 Extensions

Thus far we have restricted attention to one particularly useful ARD-based model. But much of the
analysis can be extended to handle a variety of alternative data likelihoods and priors. A particularly
useful adaptation relevant to compressed sensing [17], manifold learning [13], and neuroimaging
[12, 18] is as follows. First, the data y can be replaced with a n × t observation matrix Y which is
generated via an unknown coefficient matrix X . The assumed likelihood model and prior are

p(Y |X) ∝ exp

(

−
1

2λ
‖Y − ΦX‖2

F

)

, p(X) ∝ exp

(

−
1

2
trace

[

XT Σ−1
x X

]

)

, Σx ,

dγ
∑

i=1

γiCi.

(20)
Here each of the dγ matrices Ci’s are known covariance components of which the irrelevant ones
are pruned by minimizing the analogous type-II likelihood function

L(γ) = log |λI + ΦΣxΦT | + trace
[

1

t
XXT

(

λI + ΦΣxΦT
)−1

]

. (21)

With minimal effort, this extension can be solved using the methodology described herein. The
primary difference is that Step 2 becomes a second-order cone (SOC) optimization problem for
which a variety of techniques exist for its minimization [2, 9].
Another very useful adaptation involves adding a non-negativity constraint on the coefficients x,
e.g., non-negative sparse coding. This is easily incorporated into the MAP cost function (15) and
optimization problem (12); performance is often significantly better than the non-negative Lasso.
Results will be presented in a subsequent paper. It may also be possible to develop an effective
variant for handling classification problems that avoids additional approximations such as those
introduced in [15].

5 Discussion

While ARD-based approaches have enjoyed remarkable success in a number of disparate fields, they
remain hampered to some degree by implementational limitations and a lack of clarity regarding the
nature of the cost function and existing update rules. This paper addresses these issues by presenting
a principled alternative algorithm based on auxiliary functions and a dual representation of the ARD
objective. The resulting algorithm is initialized at the well-known Lasso solution and then iterates
via a globally convergent re-weighted `1 procedure that in many ways approximates ideal subset
selection using the `0 norm. Preliminary results using this methodology on toy problems as well
as large neuroimaging simulations with m ≈ 100, 000 are very promising (and will be reported in
future papers). A good (highly sparse) solution is produced at every iteration and so early stopping is
always feasible if desired. This produces a highly efficient, global competition among features that
is potentially superior to the sequential (greedy) updates of [16] in terms of local minima avoidance
in certain cases when Φ is highly overcomplete (i.e., m � n). Moreover, it is also easily extended
to handle additional constraints (e.g., non-negativity) or model complexity as occurs with general
covariance component estimation. A related optimization strategy has also been reported in [3].



The analysis used in deriving this algorithm reveals that ARD is exactly equivalent to performing
MAP estimation in x space using a principled, sparsity-inducing prior that is non-factorable and
dependent on both the feature set and noise parameter. We have shown that these qualities allow it
to promote maximally sparse solutions at the global minimum while relenting drastically fewer local
minima than competing priors. This might possibly explain the superior performance of ARD/SBL
over Lasso in a variety of disparate disciplines where sparsity is crucial [11, 12, 18]. These ideas
raise a key question: If we do not limit ourselves to factorable, Φ- and λ-independent regularization
terms/priors as is commonly done, then what is the optimal prior p(x) in the context of feature
selection? Perhaps there is a better choice that does not neatly fit into current frameworks linked
to empirical priors based on the Gaussian distribution. Note that the `1 re-weighting scheme for
optimization can be applied to a broad family of non-factorial, sparsity-inducing priors.
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