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A Parameter estimation for Latent Variable M odél

In this appendix, we derive update equations for the latarititsle model as described in Section 2.
The model is given by equation (1) as reproduced below:

Po(f) =Y P(f12)Pu(2).

The goal is to estimate the parameters of the model suchhtbatiest explain the collection of all
observationd/, s, whereV,,; represents the counts gfin the n'? data set in the collection. The
parameters to be estimated d¢f|z) and P,,(z). z is the hidden variable and is the feature
observed at any particular draw from the distributiBp(f). The subscript: signifies that the
generative distributio?, (f) and mixture weights>,(z) are specific to the® data set. We use a
maximum likelihood formulation of the problem. The logédikhood of all the observed data sets is
given by

P = Z Z an 1OgPrL(f) (9)
nof

The maximume-likelihood method estimates parameters swatthe log-likelihood is maximized.

The standard procedure for maximum likelihood estimatioiaient variable models is the Expecta-
tion Maximization (EM) algorithm. EM alternates two steff$) an expectation (E) step where the
a posteriori probabilities of the latent variables are computed baseith@rcurrent estimates of the
parameters, and (2) a maximization (M) step, where paramate updated such that the expected
complete data log-likelihood is maximized.

For the E-step, we obtain tteeposteriori probability for the latent variable as

__ Pu(2)P(flz)
Py(z|f) = S P.)P(]7) (10)

In the M-step, we maximize the expected complete data kagiiood. LetA represent the set of
parameters of the model, i.&.= {P(f|z), P,(z)}. The expected log-likelihood can be written as

£:E2|f;A10gP(f72)a (11)

where f andz represent the set of all observationsfoénd z in the draws that generated all data
sets. The complete data likelihood can be written as

P(faZ)O(HPn(fJaZ]):Hpn(ZJ)P(f]|Zj>a (12)
Jin Jin



wheref; andz; are the observed values of variabfeandz in the j-th draw. Hence, we can write
the functionZ as (ignoring the constant terms)

L = Eg|f;AZIOan(fjazj)

Jm
= > E.pmlogPu(f), )
Jm
= ZEZj\fj;AIOan(Zj>+ZEZj\fj;A10gP(fj|Zj)
j,n j,n
= > P(lf)log Pu(z) + > > P(2[f;)log P(f;2). (13)
jn z jn z

In the above equation, we can change the summation over grema summation over featurgs
by accounting for how many timeswas observed, i.e. th&th entry in the observed data seThe
expected log-likelihood can now be written as

L= ZZ’YanZP 2|f)log Pu(z +ZwanZP 2|f)log P(flz).  (14)

In order to take care of the normalization constraints, theva equation must be augmented by
appropriate Lagrange multiplierg andp.,

Q=L+ m(1=Y Pu) + Y (1= 3 P(112) (15)
n z z f

Maximization of@ with respect taP, (z) andP(f|z) leads to the following sets of equations

wan w(21f) + T Pa(2) = 0, (16)

Zvvfn Po(2lf) + p=P(f|z) = 0. (17)

n

After eliminating the Lagrange multipliers, we obtain thedtép re-estimation equations

PUf1e) = —ZaVinPalel) 5, VinPaCel)
ZfZ,Lan P(z|f) ZszanPn(ZU).

P,(z) =

(18)

B Maximum Likelihood and KL minimization

Maximimum likelihood method estimates parameters sucttiiedog-likelihoodP, given by equa-
tion (9), is maximized. We can rewrite this as

P = Z Zan ZZ f{;f/ log P, (f) (19)

Vin/ 324 Virm represents the normalized histogram for #ie data set. Representing this term by
Vf’ﬂl

Z van van log ( f)) +C (21)
- Z Z Vf" KL Vf'rw n(f)) +C (22)
n f

1Since observed dataset is modeled as a histogram, entoiglsl &fe integers. To account for this, we weight
the data by an unkown scaling factpr



whereC' is a constant term that is not dependentdiif).

argmaxy, P = argminy, Z ( Z Vin) KL(Vin, Po(f)) (23)
no

Maximizing P with respect taP,, (f) is therefore equivalent to minimizing the sum of the KL dis-
tances between the normalized histogrdrias and P, (f) for each data set, scaled by the total
number of draws in that data set.

C Parameter estimation: sparse latent variable model

The model is given by the equation

=Y P(fl2)Pulz)

The set of parameters to be estimatedf¢|z) and P, (z) i.e. A = {P(f|z), P.(z)}. We impose
anapriori probability on the parameters given by

P(A) x H e > P(flz)log P(f|2) H 66 >, Pn(z)log P,L(z)7

wherea andj3 are parameters indicating the extent of sparsity desirel(¢ifz) and P, () respec-
tively. The log-prior (logarithm of the abowaepriori probability) can be written as

OLZZP flz)log P(f|z) +6ZZP )log P, (), (24)

We usemaximum a posterlorl estimation and use the EM algorithm.
For the E-step, we compute theoosteriori probability of the latent variable as before:

P(2)P(]]2)
FaelD) = 5 e (@3)

In the M-step, instead of maximizing the log-likelihood, weximize the log-posterior (the loga-
rithm of thea posteriori probability of the model parameters). The log-posteridrgéanaximized is
given by ~

L= E . log P(f,7) +log P(A) (26)

where f andz represent the set of all observationsfoénd z in the draws that generated all data
sets. The first term of equation (26), corresponding to thdikelihood, can be derived as shown in
the previous appendix and is given by equation (14). Thergktmym corresponding to the log-prior
is given by equation (24). Hence, we can write the functicas (ignoring the constant terms)

ZZvanZP 2|f)log Pu(z +ZZvvfnZP z|f)log P(f|2)
+aZZPf| )log P(f|z) +6ZZP )log P, (). 27)

Here,y is a parameter that weights the data whiland3 are parameters weighting the prior.

In order to take care of the normalization constraints, the@va equation must be augmented by
appropriate Lagrange multiplierg andp.,

Q=L+ 3 m(1= Pu() + X p:(1- 3 PU12) (28)
n z z f

Maximization of@Q with respect taP, (z) and P(f|z) leads to the following sets of equations

WJraJralogP(ﬂz)erzo, (29)
VTLP7L
Zf;;—(z)(szrﬂJrﬂloan(z)JrTnO, (30)



wherea = a/vy and = 3/v. We have replaced two parameters weighting the data and prio
separately{ anda for equation (29);y and for equation (30)) by a single parameter that weights
the prior with respect to the data &nd in equations (29) and (30) respectively).

Now, consider solving foP,, (z). Equation (30) can be written as
Wy

P,(2)

wherew, represent$ _ , Vi, P, (2| f). The above set of simultaneous transcendental equations fo
P, (z) can be solved using the Lambenys function ( [3]) as proposed by [1].

+ﬂ+610gpn(z)+7_n:0a (31)

Lambert’s)V function is an inverse mapping satisfying

Wye’W =y = logW(y) +W(y) = logy

As shown in [1], we can set = ¢* and work backwards towards equation (31) as follows,

0 = -W(E")—logW(e”) +z
-1 .
= TWie) logW(e®) + z + logq — log g
—q
= ———— +logq/W(e*)+ 2z —1lo
a/W(e®) gq/W(e") gq
Settingz = 1+ 7,/ + log ¢ andq = —w. /P, (2), the above equation simplifies to equation (31):
w:/B ~w. /B
0 = 1
—(w2/B) /W (—w.et*T/B /) +log W(—w.eltm/5/3)
7-71/
+1+ 2
B
w:/B Tn
= +logP(2) +1+ —
Po(2) g Pu(2) 3
which implies that
» _wz/ﬁ

P.(z) = (32)

W(w=el+ /3] B)

where equations (31) and (32) form a set of fixed-point iterst for 7,,, and thus the M-step for
finding P, (z). [1] points out that these equations typically converge-thigrations. [2] provides
details about how to compute the lambebtsfunction.

We can similarly solve foP(f|z) by solving the set of transcendental equations given by-equa

tion (29) using Lambert'$V function. It can be shown that it can be estimated as
—{/a

(~gettre/a/a)’

where we have lef represend | Vy, P, (z|f). Equations (29) and (33) form a set of fixed-point
iterations and correspond to the M-step update$gf|z).

P(flz) = W (33)
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