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Abstract

This technical report contains the proofs of Lemmas 1 and 2 in the paper 'Cluster
Stability for Finite Samples’.

1 Proof of Lemma 1l

Proof. The proof idea is essentially identical for all valuescofVe have thailp (A (S1), Ak(S2))

is governed by the the probability mass Df which switches between clusters iy, (S5;) and

A (S2), in expectation ovels; and.S;. For reasonably large samples, all this probability mass

is tightly concentrated in small border regions between the clusters, and is governed by small fluc-
tuations in the border positions. For &ll these fluctuations become smaller as the samplensize
increases. The important point is that the location of the border points are different for different
choices ofk. For the right’ model, the borders lie in areas of very low probability density, and as a
result the probability mass @ which switches between clusters is relatively small in expectation.
In contrast, for the 'wrong’ models, some of the border points lie in areas of higher density, so the
probability mass of> which switches between clusters is relatively much higher. From this, we get
thatstab(Ag, D, m) is relatively smaller for the right’ value of, compared to the other values.

We will consider the cask = 2 in some detail, and then go over the other two cases more quickly.
To simplify the analysis, the proof involves some approximations, with approximation errors which
are asymptotically negligible as — oo, or that are arbitrarily small if; is large enough. Ap-
proximations of the first type form thg1) term in the lemma, while approximations of the second
type can be absorbed into the derived (non-tight) bounds. We will use the formulatiorv?) to
denote a normally distributed real random variable, with expectatiand variancer?. Also, we

will make frequent use of the following basic factsulf, a; are independent random variables such
thata; ~ N (uy,0%) andb ~ N (uz, 03), then the distribution ofiy + as is N (i1 + pz, 0% + 03),

and the expected value pf, | is 1/2/707.

For k = 2, let a; and a, be random variables (over the draw of a sample of sizéom D),
representing the centroids i returned by the algorithm, such that < «- (see figure 1). If the
Gaussians are well separated, we can assume that they are approximately independent: the value of
a1 is equal to the sample mean derived from the region of the larger Gaussian,awhdieequal

to the sample mean derived from the mixture of the two smaller Gaussians. The distribution of a
sample mean of a unit variance Gaussian is also Gaussian, with vatianegheren is the sample

size on which the mean is estimated. Therefore, we have that the distributigrisohpproximately
N(—pu,3/2m). Since the two smaller Gaussians are well separated and equal, the distribution of

is approximately the average of the sample means of the Gaussians, témely, 3/m).

Let 8 = (a1 + a2)/2 be a random variable denoting the border point between the two clusters.
Sincea; andas are approximately independent, we have that the distributighi@Bpproximately



N(—p/4,9/8m). As aresult, if we lefy’ and” be two independent copies 6f we have thag’ —

(" is distributed asV'(0, 9/4m). Finally, since for large values of we have thagl is concentrated
around—u/4, it follows that the probability mass @ which switches between clusters (over the
draw and clustering of two independent samples) is approximately distributgt-ag” |p(—p/4),
wherp(+) is the probability density function @. Informally, this is the probability mass which was

on 'one side of the border’ under the first clustering, and on the 'other side of the border’ under the
second clustering.

Recall thatdp (A, (S1), Ax(S2)) is defined as the probability that two instances sampled ffom
will be in the same cluster for clusteringy, (S1) and in different clusters for clustering (Sz), or
vice versa. Fok = 2 clusters, this reduces &3(1 — ¢), wheret is a random variable defined over
a pair of independent sampl§s and.S,, and represents the probability masgotvhich switches
clusters betweenl,(S;) and A5(S3). By the results of the previous paragraplis distributed as
|8 — 8" |p(—p/4). Therefore, we have that:

stab(A2, D,m) = E[dp(A2(S1), A2(S2))]
— E2t(1- 1)
2E[p(—p/4)|6" — B"]] — 2E[(p(— M/4))2(5/—ﬁ”)2]
6;%@@(_”2/32) BI|B — 5[] - = exp (—47/16) var(§' - )
~ 3Wexp (—p?/32) [\/ m——exp u2/16)%
(Nflv) QW}/EeXp(—MQ/%)

> % exp (—p°/32).

Step(1) is due to the fact that for large and/ory, the second term is negligible compared to the
first term.

For k = 3 (see figure 1), each centroid is approximately independent and equal to the sample mean
of each Gaussian, and therefore the distributions of the two cluster border goiatsd 35 are
N(—u/2,15/8m) and N (1/2,3/m) respectively. Let; denote the probability mass &f which
switches between the two leftmost clusters (over drawing and clustering two independent samples),
and lett, denote the probability mass @ which switches between the two rightmost clusters.
Since the two leftmost clusters constitute approximaiely of the sample, and the two rightmost
clusters constitute approximately3 of the sample, we have that the probability that two instances
will be in the same cluster under one clustering, and in different clusters under another clustering, is
approximately2t, (5/6 — t1) + 2t2(1/3 — t2). As before, let3], 57 be two identical independent
copies of/3;, and 35, 3) be two identical independent copies 8f. We have that3; — 37 is
distributed as\ (0, 15/4m) andg} — 34 is distributed as\V'(0, 6/m). Therefore:

stab(As,D,m) = Eldp(A3(S1),A3(S2))]
~ E[Qtl(% —t1)] + [EQtQ(% —t2)]
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Figure 1: lllustration of centroids and cluster border positionskfer 2 (upper sub-figure)y = 3
(middle sub-figure), and = 4 (lower sub-figure). The curve represents the density function of
D. For large enough sample sizes, the cluster centroids (denotedl &xyd cluster border points
(denoted by3) will be tightly concentrated around the positions indicated in the sub-figures.

For k = 4 (see figure 1), we have two centroids, as on the larger Gaussian, and two centroids

as, a4 On the two smaller Gaussians. In this case, the expected probability mass which switches
clusters over different samplings is overwhelmingly in the region between the clusteranflas,
because all other border areas are in low density areBgtafking them into account only improves

the derived lower bound).

By theorem 2 in [1], the distribution ofi; has an asymptotically Gaussian distribution, with a
variance which for simplicity will be lower bounded By2m?.

As a result, if3; and 8] are two identical copies of;, we have thap3; — 3/ is approximately
distributed as a Gaussian centered)amith a variance of at least/m. We can repeat an argument
similar to the other cases (and with the same notation) to get that:

stab(A4,D,m) = Eldp(A4(S1),As(S2))]
> E[Qtl(g—tl)]
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1In fact, this bound on the variance can be derived directly without resorting to the asymptotic assumption.
Since3; may be viewed as an unbiased estimator of the larger Gaussian’s mean, we can get the result by a
direct application of the Gmmer-Rao lower bound.



2 Proof of Lemma 2

Proof. dp(A3(S1), As(S2)) is a random variable (over the draw 8f and.S,). Its expected value

is stab(As, D, m), which by the previous lemma can be upper bounded (up to asymptotically negli-

gible approximation errors) by.1 exp(—pu?/8)//m. Therefore, by Markov’s inequality, we have
that

Pr (dD(AS(Si% A3(S3)) > eXp(—MQ/IG)) < 2.2exp(—4°/16). @)

1
2ym
We now wish to prove a lower bound @ (A2 (S;), A2(S2)) which would hold with high prob-
ability. In the proof of lemmal, we have shown that the distribution @65 (A5(S1), A2(S2)) is

approximately (up to negligible factor8p(—u/4)|8" — 8”|, where3’ — 5" has a normal distribu-
tion V'(0,9/4m), andp(-) is the probability density function @. Therefore:

Pr (dD(A2(Sl)aA2(SZ)) < \}EGXP(—MQ/W))

%Pr( L exp(—p2/32)|8 — 8] < 1mexp(—u2/16)>

3V2r Vvm
P (ﬁ’ iR exp(—/f/sz)) @

Y opr (ﬁ’ -4" < 3\\//;? exp(—u2/32)> -1

Y erf (2v/Texp(—p?/32))

) )
< dexp(—p~/32).

Step(1) is by the normal distribution of’ — 3" as specified above, ar{d) is due to the bound
erf(z) < 2z /\/m forz > 0.

In the same way, we can derive a high-probability lower bounde0A4(S1), A4(Ss)). In the
proof of lemmal, we have shown that the distributiond# (A4(S1), A4(S2)) is approximately (up
to negligible factors)4/3)p(—pu)|8; — 67|, whereg] — 3{ has a normal distribution with variance
of at leasB8/m. Repeating the same argument as above, we have that

Pr <dD(A4(Sl),A4(Sg)) < \;mexp(—,uQ/l@)

~ Pr (gjﬁlﬁi— 1l < \/%exp(—/f/lﬁ))
~ 2P (- 8 < mem(-nt/10)) -1
—2Pr (ﬁi— l < 98\/\/2‘3@(—#2/16)) ©)

<erf (3? exp(—;ﬁ/lG))

< %exp(—;ﬂ/m).



Combining inequalities 1,2,3, using the union bound, and taking into account the approximations
along the way, we have that:

min {dp(A2(57), A2(S3)), dp(A4(S7), As(S5))}
o ( dp(A3(51), A3(S2)) : 2)

e (o () e )
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