Proofs: Local Algorithmsfor Approximate Inferencein Minor-Excluded
Graphs

Proof of Lemma 1. This essentially follows from arguments in [10, 11] We sketch proof of the property (a)
for B being (r/A, O(A))-decomposition; the proof of (b) follows from Theorem 4.2 [10]. To see property (a),
consider an edgee € E. If e ¢ Binthebeginning of iteration 0 < ¢ < r — 1, then it will be present exactly
once in a breadth-first tree, sayTl This edge will be chosen in BI only |f itisat level Ll + kA, k > 0. The

probability of thisisat most 1/A since L is chosen u.ar. from {0 — 1}. By union bound, it follows
that the probability that an edge is chosen in any of ther iterationsis at most r/A. This completes the proof of
Lemmal. m|

Proof of Lemma 2. First, we prove properties of log Zi s, log Zus as follows:
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We justify (8)-(d) as follows: (&) holds because by removal of edges 5, the G’ decomposes into disjoint con-
nected components 51, . . ., Sk; (b) holds because of the definition of wiLj; (c) holds by definition «;; and (d)
holds for a similar reason as (a). The claim about difference log Zus — log Zis in the statement of Lemma
2 follows directly from definitions (i.e. subtract RHS (o) from (d)). This completes proof of claimed relation
between bounds log Z|_|37 1og ZUB

For running time analysis, note that LoG PARTITION performs two main tasks: (i) Decomposing G using
Decowmp algorithm, which by definition take Tpecome time. (ii) Computing Z; for each component S; through
exhaustive computation, which takes O(|E|/%i!) time and producing log Zis, log Zus takes addition |E|
operations at the most. Since there are K components in total with max-size of component being |S*| we

obtain that running time for this task is O(|E|K'x/®™1). Putting (i) and (ii) together, we obtain the desired
bound. This completes the proof of Lemma 2. O

Proof of Lemma 3. Assign weight w;; = v, — 1)} to an edge (4, j) € E. Since graph has maximum vertex
degree D, by Vizing's theorem there exists an edge-coloring of the graph using at most D + 1 colors. Edges
with the same color form a matching of the G. A standard application of Pigeon-hole's principle implies that
thereisacolor with weight at least D#H (Xo(i.j)em wis). Let M C E denote these set of edges. That is,
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Now, consider a @ C X" of size 2/l crested as follows. For (i,j) € M let (zV,2Y) €
arg max(, ,nesz ij(x,z'). Foreachi e V, choose =¥ € ¥ arbitrarily. Then,

Q={xeXx":V(i,j) € M, (zi,z;) = (xf],:vJU) or (:vf,x]L), for all other i € V, x; = z1'}.

Note that we have used the fact that M isamatching for ) to be well-defined.



By definition ¢;, 1;; are non-negative function (hence, their exponents are at least 1). Using this property, we
have the following:
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Justification of (0)-(c): (o) follows since 55, ¢; are non-negative functions. (a) consider the following
probabilistic experiment: assign (z;,z;) for each (i,5) € M equa to (z7,zY) or (z},z}) with prob-
ability 1/2 each. Under this experiment, the expected value of the exp(3_; ;)< i (a:z,xj)), which is

exp(viy (@) L>>+ex (Wi (2 2¥)
[ jem . s ,isequal to 2™ lMl[erQ exp(3_(; jyear Yis (@i, x;))]. Now, use
the fact that ;; (zF, = xj ) > z/;f] (b) follows from simple algebra and (c) follows by using non-negativity of
function v;;. Therefore,
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using fact about weight of M. This completes the proof of Lemma 3. m]

Proof of Lemma 4. From Lemma 2, Lemma 3 and definition of (4, A)-decomposition, we have the following.
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Now to estimate the running time, note that under (5, A) decomposition 3, with probability 1 the G' =
(V, E\B) is divided into connected components with diameter at most A with respect to G. Since maxi-
mum vertex degree is D, it follows easily that each of these component has at most D® nodes. Now, the
running time bound of Lemma 2 implies the desired resullt. O

Proof of Theorem 1. The justification about the estimates log Zi g, log Zug follows from (r/A, O(A))-
decomposition property of DeC algorithm (Lemma 1) and Lemma 4. The bound on running time follows
from Lemma 4 as well. m|
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Proof of Lemma 5. By definition of MAP x*, we have H(x*) < H(x*). Now, consider the following.
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We justify (a)-(d) as follows: (&) holds because for each edge (i,j) € B, we have replaced its effect by
maximal value wg; (b) holds because by placing constant value 1/;5 over (i,j) € B, the maximization over
G decomposes into maximization over the connected components of G = (V, E\B); (c) holds by definition

of x*¥ and (d) holds because when we obtain global assignment x* from x*7,1 < j < K and compute its
global value, the additional terms get added for each (4, j) € B which add at least ); amount.

The running time analysis of MODE is exactly the same as that of LOG PARTITION in Lemma2. Hence, we
skip the details here. This completes the proof of Lemma5. ]

Proof of Lemma 6. Assign weight w;; = w% to an edge (i, j) € E. Using argument of Lemma 3, we obtain
that there exists amatching M C E such that
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Now, consider an assignment x as follows: for each (i,5) € M set (z},z)) =
arg max, ./ ex2 ¥ij(z,2'); for remaining i € V, set ;" to some value in X arbitrarily. Note that for

above assignment to be possible, we have used matching property of M. Therefore, we have
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Here (a) follows because 15, ¢; are non-negative valued functions. Since H(x*) > H(x") and {; > 0 for
al (i,j) € E, weobtain the Lemma 6. O
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Proof of Lemma 7. From Lemmab, Lemma6 and definition of (d, A)-decomposition, we have the following.
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The running time bound can be obtained using arguments similar to those in Lemma 4. m]

Proof of Theorem 2. The justification about the bound on estimate H(x*) follows from (r/A, O(A))-
decomposition property of DeC agorithm (Lemma 1) and Lemma 7. The bound on running time follows
from Lemma 7 as well. ad
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