
Supplement to ”Kernel Measures of Conditional Dependence”

This supplementary material provides the technical proofsomitted in the submitted paper. The
reference and equation numbers in this material follow the paper.

A Proof of Theorem 2

Proof of Theorem 2.Without loss of generality we can assume�(0) = 1. From the positive defi-
niteness ofk, we havej�(z)j2 � �(0)2 = 1. Recall that the RKHS associated withk has an explicit
expression H = nf 2 L2(Rm ) ��� Z j ~f(u)j2~�(u) du <1o; (12)

where~� and ~f are the Fourier transforms of� andf , respectively.

LetP be an arbitrary Borel probability onRm , and� 2 Rm be arbitrary. Since the Fourier transform
of e�p�1�T z�(z=�) is equal to~�(�(u + �)), from Eq. (12) and the assumption of the theorem the
functione�p�1�T z�(z=�) belongs toH for any� > �0. Thus, the bounded convergence theorem
guarantees EP ��e�p�1�T z � e�p�1�T z�(z=�)��2 �! 0 (� !1):
This implies that we have only to prove that the linear hull offe�p�1�T z j � 2 Rmg is dense inL2(P ).
Let f be an arbitrary function inL2(P ). We can assumef is continuously differentiable with
a compact support, because those functions are dense inL2(P ). Let " > 0 be arbitrary,M =supx2R jf(x)j, andA be a positive number such that[�A;A℄m contains the support off andP ([�A;A℄m) > 1� "=4M2. It is well known [13, Theorem II.8] that the series of functionsfN (z) = NXn1=�N � � � NXnm=�N ne�p�1A nT z (N 2 N)
(n = (n1; : : : ; nm) 2 (N [ f0g)m) with the Fourier coefficientsn = 1(2A)m Z[�A;A℄m f(z) e��p�1A nT z dz
converges uniformly tof(z) on [�A;A℄m, asN ! 1. Thus, for sufficiently largeN , we havejf(z) � fN (z)j2 < "=2 on [�A;A℄m, and the periodicity offN(z) ensuressupz2Rm jfN (z)j2 <(M +p"=2)2 < 2M2. We obtainEP jf � fN j2 < ", which completes the proof.

B Proof of Theorem 4

We start with a lemma.

Lemma 6. Assume that the kernels and the random variables satisfy (A-1), andHZ +R is dense inL2(PZ). Then,hg;�1=2Y Y VY ZVZX�1=2XXfiHY = Eh�E[f(X)jZ℄�E[f(X)℄��E[g(X)jZ℄�E[g(X)℄�i:
Proof. Since it is known [8] that�ZZ is Hilbert-Schmidt under the assumption (A-1), there exists
a CONSf�ig1i=1 of HZ such that�ZZ�i = �i�i with an eigenvalue�i � 0. Let I+ = fi 2 N j�i > 0g, and define ~�i = 1p�i (�i �E[�(Z)℄)
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for i 2 I+. BecauseR(VZY ) andR(VZX ) are orthogonal toN (�ZZ ), we havehg;�1=2Y Y VY ZVZX�1=2XXfiHY= 1Xi=1
�i; VZY �1=2Y Y g�HY
�i; VZX�1=2XXf�HX= Xi2I+
�i; VZY �1=2Y Y giHY 
�i; VZX�1=2XXfiHX= Xi2I+D 1p�i �i;�ZY gEHYD 1p�i�i;�ZXfEHX= Xi2I+�~�i; E[g(Y )jZ℄�E[g(Y )℄�L2(PZ )�~�i; E[f(X)jZ℄�E[f(X)℄�L2(PZ ):
Obviously,f~�igi2I+ is an orthonormal system inL2(PZ). Furthermore, from the assumption thatHZ + R is dense inL2(PZ), the systemf~�igi2I+ [ f1g is a CONS inL2(PZ). This implieshg;�1=2Y Y VY ZVZX�1=2XXfiHY= �E[g(Y )jZ℄�E[g(Y )℄; E[f(X)jZ℄�E[f(X)℄�L2(PZ )� �1; E[g(Y )jZ℄�E[g(Y )℄�L2(PZ )�1; E[f(X)jZ℄�E[f(X)℄�L2(PZ )= EZh�E[g(Y )jZ℄�E[g(Y )℄��E[f(X)jZ℄�E[f(X)℄�i;
which proves the lemma.

Using the above lemma, Theorem 4 is proved as follows.

Proof of Theorem 4.Let f�ig1i=1 andf jg1j=1 be complete orthonormal systems ofHX andHY ,
respectively, consisting of the eigenfunctions of�XX and�Y Y with �XX�i = �i�i (�i � 0) and�Y Y  j = �j j (�j � 0). Then, we have the expansionkVY XjZk2HS = 1Xi;j=1h j ; VY X�ii2HY � 2 1Xi;j=1h j ; VY X�iiHY h j ; VY ZVZX�iiHY+ 1Xi;j=1h j ; VY ZVZX�ii2HY : (13)

Let IX+ = fi 2 N j �i > 0g andIY+ = fi 2 N j �i > 0g. In a similar manner to the proof of Lemma
6, with the notations~�i = (�i �E[�i(X)℄)=p�i and ~ j = ( j �E[ j(Y )℄)=p�j for i 2 IX+ andj 2 IY+ , the first term of Eq. (13) is rewritten asXi2IX+ ;j2IY+ h ~ j ;�Y X ~�ii2HY = Xi2IX+ ;j2IY+ EY X� ~ j(Y )~�i(X)�2= Xi2IX+ ;j2IY+�Z ZX�Y pXY (x; y)~�i(x) ~ j(y)d�X d�Y�2:
Let ~�0 = 1 and ~ 0 = 1. From the assumption that(HX 
 HY ) + R is dense inL2(PX 
 PY ),
the classf~�i ~ jgi2IX+ [f0g;j2IY+[f0g is a CONS ofL2(PX 
 PY ). Thus, the last line of the above
equations is further rewritten as pXY (x; y)pX(x)pY (y)2L2(PX
PY ) � Xi2IX+ E�~�i(X)℄� Xj2IY+ E� ~ j(Y )℄� 1= Z ZX�Y p2XY (x; y)pX(x)pY (y)d�X d�Y � 1:
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For the second term of Eq. (13), Lemma 6 implies1Xi;j=1h j ; VY X�iiHY h j ; VY ZVZX�iiHY= Xi2IX+ ;j2IY+ h ~ j ;�Y X ~�iiHY h ~ j ;�1=2Y Y VY ZVZX�1=2XX ~�iiHY= Xi2IX+ ;j2IY+ E� ~ j(Y )~�i(X)�E�E[ ~ j(Y )jZ℄E[ ~�i(X)jZ℄�= Xi2IX+ ;j2IY+ Z ZX�Y ~ j(y)~�i(x)pXY (x; y)d�X d�Y Z ZX�Y ~ j(y)~�i(x)pX??Y jZ(x; y)d�X d�Y= Xi2IX+ ;j2IY+� ~ j ~�i; pXYpXpY �L2(PX
PY )�~�i ~ j ; pX??Y jZpXpY �L2(PX
PY ):
By a similar argument to the case of the first term, the second term of Eq. (13) equals�2� pXYpXpY ; pX??Y jZpXpY �L2(PX
PY ) + 2;
and the third term of Eq. (13) equalspX??Y jZpXpY 2L2(PX
PY ) � 1:
This completes the proof.

C Proof of Theorem 5

Proof. From the expressions in Eq. (3) and Eq. (6), it is sufficient toprovekbV (n)Y X � VY XkHS ! 0
in probability. The proof is analogous to those of Lemma 6 and7 in [4], though considering the
Hilbert-Schmidt norm is more involved.

From the trivial decompositionkbV (n)Y X � VY XkHS � kbV (n)Y X � (�Y Y + "nI)�1=2�Y X(�XX + "nI)�1=2HS+ (�Y Y + "nI)�1=2�Y X(�XX + "nI)�1=2 � VY XHS ;
it suffices to showbV (n)Y X � (�Y Y + "nI)�1=2�Y X(�XX + "nI)�1=2HS = Op("�3=2n n�1=2); (14)

and (�Y Y + "nI)�1=2�Y X(�XX + "nI)�1=2 � VY XHS = o(1): (15)

The operator on the left hand side of Eq. (14) is decomposed as�(b�(n)Y Y + "nI)�1=2 � (�Y Y + "nI)�1=2	b�(n)Y X(b�(n)XX + "nI)�1=2+ (�Y Y + "nI)�1=2�b�(n)Y X ��Y X	(b�(n)XX + "nI)�1=2+ (�Y Y + "nI)�1=2�Y X�(b�(n)XX + "nI)�1=2 � (�XX + "nI)�1=2	: (16)

From the equalityA�1=2 �B�1=2 = A�1=2�B3=2 �A3=2�B�3=2 + (A�B)B�3=2;
the first term of Eq. (16) is equal to�(b�(n)Y Y + "nI)�1=2���Y Y + "nI�3=2 � �b�(n)Y Y + "nI�3=2	+ �b�(n)Y Y ��Y Y �	� �b�(n)Y Y + "nI��3=2b�(n)Y X(b�(n)XX + "nI)�1=2:
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Using
(b�(n)Y Y +"nI)�1=2 � 1p"n ,

�b�(n)Y Y +"nI��1=2b�(n)Y X�b�(n)XX+"nI��1=2 � 1; and Lemma
7 below, the HS norm of the above operator is bounded from above by1"nn 3p"n max�k�Y Y + "nIk1=2; kb�(n)Y Y + "nIk1=2	+ 1okb�(n)Y Y ��Y Y kHS :
A similar bound also applies to the HS norm of the third term inEq. (16). An upper bound on
the HS norm of the second term is simply1"n k�Y X � b�(n)Y XkHS . Thus, Eq. (14) is obtained by

noticingkb�(n)XXk = k�XXk+op(1), kb�(n)Y Y k = k�Y Y k+op(1), and the factkb�(n)YX ��Y XkHS =Op(1=pn) [4, Lemma 5].

To prove Eq. (15), take CONS’sf�ig1i=1 andf jg1j=1 for HX andHY , respectively, in the same
manner as in the proof of Theorem 4. We have(�Y Y + "nI)�1=2�Y X(�XX + "nI)�1=2 � VY X2HS= 1Xi;j=1
 j ;�(�Y Y + "nI)�1=2�Y X (�XX + "nI)�1=2 � VY X	�i�2HY= 1Xi;j=1�r �i�i + "nr �i�i + "n � 1�2h j ; VY X�ii2HX :
Because each summand in the last line is upper bounded byh j ; VY X�ii2HY and the seriesP1i;j=1h j ; VY X�ii2HY is finite from the assumption thatVY X is Hilbert-Schmidt, the dominated
convergence theorem guarantees the interchangeability ofthe series and the limit"n ! 0; thus, we
have lim"!0(�Y Y + "nI)�1=2�Y X(�XX + "nI)�1=2 � VY X2HS= 1Xi;j=1 lim"n!0�r �i�i + "nr �i�i + "n � 1�2h j ; VY X�ii2HX = 0:
This shows Eq. (15) and completes the proof.

Lemma 7. SupposeA andB are positive, self-adjoint, Hilbert-Schmidt operators ona Hilbert
space. Then, kA3=2 �B3=2kHS � 3�maxfkAk; kBkg�1=2 kA�BkHS :
Proof. Without loss of generality we can assumemaxfkAk; kBkg = 1. Then, we haveO �A;B � I . Define functionsf andg on fz 2 C j jzj � 1g by f(z) = (1 � z)3=2 andg(z) =(1� z)1=2. Let f(z) = 1Xn=1 bnzn and g(z) = 1Xn=0 nzn
be the power series expansions. They converge absolutely for jzj � 1. Using the factsb0 = 1,b1 = � 32 , andbn > 0 (n � 2), the inequalityNXn=0 jbnj =1 + 32 + NXn=2 bn = 1 + 32 + limx"1 NXn=2 bnxn� 1 + 32 + limx"1nf(x)� 1 + 32o = 3
is obtained for allN . The bound

P1n=0 jnj � 2 can be proved similarly. Obviously,jnbnj = jnj
for n � 2 andjb1j = 32 j0j.
Define a series of operatorsfDNg1N=1 byDN = NXn=0 bn�(I �A)n � (I �B)n�:
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Expansion of the right hand side shows thatDN is Hilbert-Schmidt. The Hilbert-Schmidt norm ofDN satisfies kDNkHS � NXn=0 jbnjk(I �A)n � (I �B)nkHS :
We can prove by induction thatk(I �A)n � (I �B)nkHS � nkA�BkHS holds for alln; in fact,
this follows from the inequalityk(I � A)n � (I �B)nkHS= �(I �A)� (I �B)�(I �A)n�1 + (I �B)�(I �A)n�1 � (I �B)n�1�HS� k(I �A)n�1k kA�BkHS + kI �Bk (I �A)n�1 � (I �B)n�1HS :
Thus, we obtain kDNkHS � NXn=0njbnjkA�BkHS � 32 NXn=0 jnjkA�BkHS ;
which impliesDN is a Cauchy sequence in the Hilbert space of the Hilbert-Schmidt operators. Thus,
there is a Hilbert-Schmidt operatorD� such thatkDN �D�kHS ! 0. On the other hand, from the
factO � I �A; I �B � I , in the expressionDN = NXn=0 bn(I �A)n � NXn=0 bn(I �B)n;
the two terms in the right hand side converge in operator normtoA3=2 andB3=2, respectively; henceDN ! A3=2 �B3=2 in operator norm. This necessarily meansD� = A3=2 �B3=2, and we havekA3=2 �B3=2kHS = limN!1 kDNkHS � 32 limN!1 NXn=0 jnjkA�BkHS = 3kA�BkHS :

13


