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1 Proof of Theorem 1

Let 7(F + ah) = E[In(1 + e~ ¥(F(@)+ah(@))] Given the previous estimate F'(x), we first fix a and
choose h(x) to minimize a second-order expansion of 7 (F + ah) around h(z) = 0.
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For @ > 0, minimizing this approximation of 7(F + ah) with respect to h(x) is e u1valent to
maximizing the weighted expectation E,[yh(z)] = E[g(z,y)yh(z)] where ¢(x,y) = m
This criterion is optimized for f(z) = sign(E,[y|z]).
Now, given h(z), FilterBoost chooses « to minimize the upper bound
7(F + ah) < E[e”v(F@)Fah@)],
This is the same optimization objective used by AdaBoost and is minimized when o = % log( };;f?{ )
where 7 is the edge of h(x); this is exactly the « used by FilterBoost. |
2 Proof of Lemma 1
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Defining v¢(z,y) = azyh:(z), combining (2) and (3) gives
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Substituting (4) into (1), and using In(1 + 2) < z, gives
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Let Dy(z,y) = W. Then we can write
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Using o = 1 In( %;fz:) and ¢, = Prp, [sign(h:(z)) # y] lets us write
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Substituting this factor into (5) completes the proof. W

3 Proof of Theorem 4

Suppose p; > £/2. Then the probability that the filter rejects n sequential examples is (1 — p;)" <
(1 —¢/2)™. So, if (1 —e/2)™ < 4}, then p; < £/2 with probability at least 1 — ¢;. From Theorem
2, we know p; < £/2 implies err; < e. The condition (1 — £/2)™ < §; gives our bound on n to
ensure err; < ¢ with high probability. |

4 Proof of Lemma 2

The proof is identical to Lemma 1 up to (5). Now, though, ay = £ In( i;?” ). Using Pr[|9: — 7| <

] > 1 — 6 and 45 = 3, we know vy, > 11’ with probability at least 1 — d;, which in turn

implies 4; < 7. So we may rewrite and bound the sum in (5) as:
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Ye > v (1 — 7) gives
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Substituting in 4, = 1th
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Substituting into (5) gives the required bound. |

5 Datasets

Majority is generated by a majority vote rule among 40 of 100 binary attributes, with labels cor-
rupted with 10% probability. Twonorm is a noisy synthetic dataset with 20 real-valued attributes
from Breiman (1998). Adult is from the UCI Machine Learning Repository (Newman et al., 1998,
donated by Ron Kohavi). Adult consists of 14-attribute census data, with labels indicating income
level, and eliminating examples with missing attribute values left 45222 examples. Covertype (copy-
righted by Jock A. Blackard and Colorado State U.) is also from the UCI Machine Learning Reposi-
tory. It contains 54-attribute forestry data, where examples are locations and labels indicate the type
of tree cover. The original dataset has 7 classes, but we combined the 6 smallest to make the dataset
binary, leaving the largest (49% of the examples) alone.



