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Abstract

We derive a cost functional for estimating the relationship between high-
dimensional observations and the low-dimensional process that generated them
with no input-output examples. Limiting our search to invertible observation
functions confers numerous benefits, including a compact representation and no
suboptimal local minima. Our approximation algorithms for optimizing this cost
functional are fast and give diagnostic bounds on the quality of their solution. Our
method can be viewed as a manifold learning algorithm that utilizes a prior on the
low-dimensional manifold coordinates. The benefits of taking advantage of such
priors in manifold learning and searching for the inverse observation functions
in system identification are demonstrated empirically by learning to track mov-
ing targets from raw measurements in a sensor network setting and in an RFID
tracking experiment.

1 Introduction

Measurements from sensor systems typically serve as a proxy for latent variables of interest. To
recover these latent variables, the parameters of the sensor system must first be determined. When
pairs of measurements and their corresponding latent variables are available, fully supervised re-
gression techniques may be applied to learn a mapping between latent states and measurements.
In many applications, however, latent states cannot be observed and only a diffuse prior on them is
available. In such cases, marginalizing over the latent variables and searching for the model parame-
ters using Expectation Maximization (EM) has become a popular approach [3,9,19]. Unfortunately,
such algorithms are prone to local minima and require very careful initialization in practice.

Using a simple change-of-variable model, we derive an approximation algorithm for the Unsuper-
vised Regression problem – estimating the nonlinear relationship between latent-states and their
observations when no example pairs are available, when the observation function is invertible, and
when the measurement noise is small. Our method is not susceptible to local minima and provides a
guarantee on the quality of the recovered observation function. We identify conditions under which
our estimate of the mapping is asymptotically consistent and empirically evaluate the quality of our
solutions and their stability under variations of the prior. Because our algorithm takes advantage of
an explicit prior on the latent variables, it recovers latent variables more accurately than manifold
learning algorithms when applied to similar tasks.

Our method may be applied to estimate the observation function in nonlinear dynamical systems
by enforcing a Markovian dynamics prior over the latent states. We demonstrate this approach
to nonlinear system identification by learning to track a moving object in a field of completely
uncalibrated sensor nodes whose measurement functions are unknown. Given that the object moves
smoothly over time, our algorithm learns a function that maps the raw measurements from the sensor
network to the target’s location. In another experiment, we learn to track Radio Frequency ID (RFID)



tags given a sequence of voltage measurements induced by the tag in a set of antennae . Given only
these measurements and that the tag moves smoothly over time, we can recover a mapping from
the voltages to the position of the tag. These results are surprising because no parametric sensor
model is available in either scenario. We are able to recover the measurement model up to an affine
transform given only raw measurement sequences and a diffuse prior on the state sequence.

2 A diffeomorphic warping model for unsupervised regression

We assume that the set X = {xi}1···N of latent variables is drawn (not necessarily iid) from a known
distribution, pX(X) = pX(x1, · · · , xN ). The set of measurements Y = {yi}1···N is the output of
an unknown invertible nonlinearity applied to each latent variable, yi = f0(xi). We assume that
observations, yi ∈ RD, are higher dimensional than latent variables xi ∈ Rd. Computing a MAP
estimate of f0 requires marginalizing over X and maximizing over f . EM, or some other form of
coordinate ascent on a Jensen bound of the likelihood, is a common way of estimating the parameters
of this model, but such methods suffer from local minima.

Because we have assumed that f0 is invertible and that there is no observation noise, this process
describes a change of variables. The true distribution pY(Y) over Y can be computed in closed form
using a generalization of the standard change of variables formula (see [14, thm 9.3.1] and [7, chap
11]):

pY(Y) = pY(Y; f0) = pX(f−1
0 (y1), · · · , f−1

0 (yN ))
N∏
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(1)
The determinant corrects the warping of each infinitesimal volume element around f−1

0 (yi) by ac-
counting for the stretching induced by the nonlinearity. The change of variables formula immedi-
ately yields a likelihood over f , circumventing the need for integrating over the latent variables.

We assume f0 diffeomorphically maps a ball in Rd containing the data onto its image. In this case,
there exists a function g defined on an open set containing the image of f such that g(f(x)) = x
and ∇g∇f = I for all x in the open set [5]. Consequently, we can substitute g for f−1 in (1) and,
taking advantage of the identity det(∇f ′∇f)−1 = det∇g∇g′, write its log likelihood as

lY(Y; g) = log pY(Y; g) = log pX(g(y1), . . . , g(yN )) +
1
2

N∑
i=1

log det (∇g(yi)∇g(yi)′) . (2)

For many common priors pX, the maximum likelihood g yields an asymptotically consistent es-
timate of the true distribution pY. When certain conditions on pX are met (including stationarity,
ergodicity, and kth-order Markov approximability), a generalized version of the Shannon-McMillan-
Breiman theorem [1] guarantees that log pY(Y; g) asymptotically converges to the relative entropy
rate between the true pY(Y) and pY(Y; g). This quantity is maximized when these two distribu-
tions are equal. Therefore, if the true pY follows the change of variable model (1), the recovered g
converges to the true f−1

0 in the sense that they both describe a change of variable from the prior
distribution pX to the distribution pY.

Note that although our generative model assumes no observation noise, some noise in Y can be
tolerated if we constrain our search over smooth functions g. This way, small perturbations in y due
to observation noise produce small perturbations in g(y).

3 Approximation algorithms for finding the inverse mapping

We constrain our search for g to a subset of smooth functions by requiring that g have a finite
representation as a weighted sum of positive definite kernels k centered on observed data, g(y) =∑N

i=1 cik(y, yi), with the weight vectors ci ∈ Rd. Accordingly, applying g to the set of observations
gives g(Y) = CK, where C = [ c1···cN ] and K is the kernel matrix with Kij = k(yi, yj). In
addition, ∇g(y) = C∆(y), where ∆(y) is an N × D matrix whose ith row is ∂k(yi,y)

∂y . We tune
the smoothness of g by regularizing (2) with the RKHS norm [17] of g. This norm has the form
‖g‖2

k = trCKC′, and the regularization parameter is set to λ
2 .



For simplicity, we require pX to be a Gaussian with mean zero and inverse covariance ΩX, but we
note our methods can be extended to any log-concave distribution. Substituting into (2) and adding
the smoothness penalty on g, we obtain:

max
C

−vec (KC′)′ ΩXvec (KC′)− λtrCKC′ +
N∑

i=1

log detC∆(yi)∆(yi)′C′, (3)

where the vec (·) operator stacks up the columns of its matrix argument into a column vector.

Equation (3) is not concave in C and is likely to be hard to maximize exactly. This is because
log det(A′A) is not concave for A ∈ Rd×D. Since the cost is non-concave, gradient descent
methods may converge to local minima. Such local minima, in addition to the burdensome time and
storage requirements, rule out descent strategies for optimizing (3).

Our first algorithm for approximately solving this optimization problem constructs a semidefinite
relaxation using a standard approach that replaces outer products of vectors with positive definite
matrices. Rewrite (3) as

max
C

− tr
(
Mvec (C′) vec (C′)′

)
+

N∑
i=1

log det
([

trJkl
i vec (C′) vec (C′)′

])
(4)

M = (Id ⊗K)ΩX(Id ⊗K) + λ(Id ⊗K) , Jkl
i = Elk ⊗∆(yi)∆(yi)′ (5)

where the klth entry of the matrix argument of the logdet is as specified, and the matrix Eij is zero
everywhere except for 1 in its ijth entry. This optimization is equivalent to

max
Z�0

− tr (MZ) +
N∑

i=1

log det
([

trJkl
i Z

])
, (6)

subject to the additional constraint that rank(Z) = 1. Dropping the rank constraint yields a concave
relaxation for (3). Standard interior point methods [20] or subgradient methods [2] can efficiently
compute the optimal Z for this relaxed problem. A set of coefficients C can then be extracted from
the top eigenvectors of the optimal Z, yielding an approximate solution to (3). Since (6) without
the rank constraint is a relaxation of (3), the optimum of (6) is an upper bound on that of (3). Thus
we can bound the difference in the value of the extracted solution and that of the global maximum
of (3). As we will see in the following section, this method produces high quality solutions for a
diverse set of learning problems.

In practice, standard algorithms for (6) run slowly for large data sets, so we have developed an
intuitive algorithm that also provides good approximations and runs much more quickly. The non-
concave logdet term serves to prevent the optimal solution of (2) from collapsing to g(y) = 0,
since X = 0 is the most likely setting for the zero-mean Gaussian prior pX. To circumvent the
non-concavity of the logdet term, we replace it with constraints requiring that the sample mean and
covariance of g(Y) match the expected mean and covariance of the random variables X. These
moment constraints prevent the optimal solution from collapsing to zero while remaining in the
typical set of pX. The expected covariance of X, denoted by Λ̄X, can be computed by averaging
the block diagonals of Ω−1

X . However, the particular choice of Λ̄X only influences the final solution
up to a scaling and rotation on g, so in practice, we set it to the identity matrix. We thus obtain the
following optimization problem:

min
C

vec (KC′)′ ΩXvec (KC′) + λtrCKC′ (7)

s.t.
1
N

CK(CK)′ = Λ̄X (8)

1
N

CK1 = 0, (9)

where 1 is a column vector of 1s. This optimization problem searches for a g that transforms
observations into variables that are given high probability by pX and match its stationary statistics.
This is a quadratic minimization with a single quadratic constraint and, after eliminating the linear
constraints with a change of variables, can be solved as a generalized eigenvalue problem [4].



4 Related Work

Manifold learning algorithms and unsupervised nonlinear system identification algorithms solve
variants of the unsupervised regression problem considered here.

Our method provides a statistical model that augments manifold learning algorithms with a prior on
latent variables. Our spectral algorithm from Section 3 reduces to a variant of KPCA [15] when X
are drawn iid from a spherical Gaussian. By adopting a nearest-neighbors form for g instead of the
RBF form, we obtain an algorithm that is similar to embedding step of LLE [12, chap 5]. In addition
to our use of dynamics, a notable difference between our method and principal manifold methods
[16] is that instead of learning a mapping from states to observations, we learn mappings from
observations to states. This reduces the storage and computational requirements when processing
high-dimensional data. As far as we are aware, in the manifold learning literature, only Jenkins and
Mataric [6] explicitly take temporal coherency into account, by increasing the affinity of temporally
adjacent points and applying Isomap [18].

State-of-the-art nonlinear system identification techniques seek to recover all the parameters of a
continuous hidden Markov chain with nonlinear state transitions and observation functions given
noisy observations [3,8,9,19]. Because these models are so rich and have so many unknowns, these
algorithms resort to coordinate ascent (for example, via EM), making them susceptible to local min-
ima. In addition, each iteration of coordinate ascent requires some form of nonlinear smoothing
over the latent variables, which is itself both computationally costly and becomes prone to local
minima when the estimated observation function becomes non-invertible during the iterations. Fur-
ther, because mappings from low-dimensional to high-dimensional vectors require many parameters
to represent, existing approaches tend to be unsuitable for large-scale sensor network or image anal-
ysis problems. Our algorithms do not have local minima and represent the more compact inverse
observation function where high-dimensional observations appear only in pairwise kernel evalua-
tions.

Comparisons with a semi-supervised variant of these algorithms [13] show that weak priors on the
latent variables are extremely informative and that additional labeled data is often only necessary to
fix the coordinate system.

5 Experiments

The following experiments show that latent states and observation functions can be accurately and
efficiently recovered up to a linear coordinate transformation given only raw measurements and a
generic prior over the latent variables. We compare against various manifold learning and nonlinear
system identification algorithms. We also show that our algorithm is robust to variations in the
choice of the prior.

As a measure of quality, we report the affine registration error, the average residual per data point
after registering the recovered latent variables with their ground truth values using an affine trans-

formation: err = minA,b
1
N

√∑N
t=1 ‖Axt − x0

t + b‖2
2, where x0

t is the ground truth setting for xt.
All of our experiments use a spherical Gaussian kernel. To define the Gaussian prior pX, we start
with a linear Gaussian Markov chain st = Ast−1 + ωt, where A and the covariance of ω are block
diagonal and define d Markov chains that evolve independently from each other according to New-
tonian motion. The latent variables xt extract the position components of st. The inverse covariance
matrix corresponding to this process can be obtained in closed form. More details and additional
experiments can be found in [12].

We begin with a low-dimensional data set to simplify visualization and comparison to systems
that do not scale well with the dimensionality of the observations. Figure 1(b) shows the embed-
ding of a 1500 step 2D random walk shown in Figure 1(a) into R3 by the function f(x, y) =
(x, y cos(2y), y sin(2y)). Note that the 2D walk was not generated by a linear Gaussian model, as
it bounces off the edges of its bounding box. Lifted points were passed to our algorithm, which
returned the 2D variables shown in Figure 1(c). The true 2D coordinates are recovered up to a scale,
a flip, and some shrinking in the lower left corner. Therefore the recovered g is close the inverse
of the original mapping, up to a linear transform. Figure 1(d) shows states recovered by the algo-
rithm of Roweis and Ghahramani [3]. Smoothing with the recovered function simply projects the
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Figure 1: (a) 2D ground truth trajectory. Brighter colors indicate greater distance to the origin. (b) Embedding
of the trajectory into R 3 . (c) Latent variables are recovered up to a linear transformation and minor distortion.
Roweis-Ghahramani (d), Isomap (e), and Isomap+temporal coherence (f) recovered low-dimensional coordi-
nates that exhibit folding and other artifacts that cannot be corrected by a linear transformation.

observations without unrolling the roll. The joint-max version of this algorithm took about an hour
to converge on a 1Ghz Pentium III and converges only when started at solutions that are sufficiently
close to the true solution. Our spectral algorithm took about 10 seconds. Isomap (Figure 1(e)) per-
forms poorly on this data set due to the low sampling rate on the manifold and the fact that the true
mapping f is not isometric. Including temporal neighbors into Isomap’s neighborhood structure (as
per ST-Isomap) creates some folding, and the true underlying walk is not recovered (Figure 1(f)).
KPCA (not shown) chooses a linear projection that simply eliminates the first coordinate. We found
the optimal parameter settings for Isomap, KPCA, and ST-Isomap by a fine grid search over the
parameter space of each algorithm.

The upper bound on the log-likelihood returned by the relaxation (6) serves as a diagnostic on the
quality of our approximations. This bound was −3.9 × 10−3 for this experiment. Rounding the
result of the relaxation returned a g with log likelihood −5.5 × 10−3. The spectral approximation
(7) also returned a solution with log likelihood −5.5 × 10−3, confirming our experience that these
algorithms usually return similar solutions. For comparison, log-likelihood of KPCA’s solution was
−1.69× 10−2, significantly less likely than our solutions, or the upper bound.

5.1 Learning to track in an uncalibrated sensor network

We consider an artificial distributed sensor network scenario where many sensor nodes are deployed
randomly in a field in order to track a moving target (Figure 2(a)). The location of the sensor
nodes is unknown, and the sensors are uncalibrated, so that it is not known how the position of the
target maps to the reported measurements. This situation arises when it is not feasible to calibrate
each sensor prior to deployment or when variations in environmental conditions affect each sensor
differently. Given only the raw measurements produced by the network from watching a smoothly
moving target, we wish to learn a mapping from these measurements to the location of the target,
even though no functional form for the measurement model is available. A similar problem was
considered by [11], who sought to recover the location of sensor nodes using off-the-shelf manifold
learning algorithms.

Each latent state xt is the unknown position of the target at time t. The unknown function f(xt)
gives the set of measurements yt reported by the sensor network at time t. Figure 2(b) shows the
time series of measurements from observing the target. In this case, measurements were generated
by having each sensor s report its true distance ds

t to the target at time t and passing it through a
random nonlinearity of the form αs exp(−βsds

t ). Note that only f , not the measurement function
of each sensor, needs be invertible. This is equivalent to requiring that a memoryless mapping from
measurements to positions must exist.








