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Abstract

In this paper we focus on the issue of normalization of the affinity matrix in spec-
tral clustering. We show that the difference between N-cuts and Ratio-cuts is
in the error measure being used (relative-entropy versus L1 norm) in finding the
closest doubly-stochastic matrix to the input affinity matrix. We then develop a
scheme for finding the optimal, under Frobenius norm, doubly-stochastic approxi-
mation using Von-Neumann’s successive projections lemma. The new normaliza-
tion scheme is simple and efficient and provides superior clustering performance
over many of the standardized tests.

1 Introduction

The problem of partitioning data points into a number of distinct sets, known as the clustering
problem, is central in data analysis and machine learning. Typically, a graph-theoretic approach to
clustering starts with a measure of pairwise affinity Kij measuring the degree of similarity between
points xi, xj , followed by a normalization step, followed by the extraction of the leading eigenvectors
which form an embedded coordinate system from which the partitioning is readily available. In this
domain there are three principle dimensions which make a successful clustering: (i) the affinity
measure, (ii) the normalization of the affinity matrix, and (iii) the particular clustering algorithm.
Common practice indicates that the former two are largely responsible for the performance whereas
the particulars of the clustering process itself have a relatively smaller impact on the performance.

In this paper we focus on the normalization of the affinity matrix. We first show that the existing
popular methods Ratio-cut (cf. [1]) and Normalized-cut [7] employ an implicit normalization which
corresponds to L1 and Relative Entropy based approximations of the affinity matrix K to a doubly
stochastic matrix. We then introduce a Frobenius norm (L2) normalization algorithm based on a
simple successive projections scheme (based on Von-Neumann’s [5] successive projection lemma
for finding the closest intersection of sub-spaces) which finds the closest doubly stochastic matrix
under the least-squares error norm. We demonstrate the impact of the various normalization schemes
on a large variety of data sets and show that the new normalization algorithm often induces a signif-
icant performance boost in standardized tests. Taken together, we introduce a new tuning dimension
to clustering algorithms allowing better control of the clustering performance.

2 The Role of Doubly Stochastic Normalization

It has been shown in the past [11, 4] that K-means and spectral clustering are intimately related
where in particular [11] shows that the popular affinity matrix normalization such as employed
by Normalized-cuts is related to a doubly-stochastic constraint induced by K-means. Since this
background is a key to our work we will briefly introduce the relevant arguments and derivations.

Let xi ∈ RN , i = 1, ..., n, be points arranged in k (mutually exclusive) clusters ψ1, .., ψk with
nj points in cluster ψj and

∑
j nj = n. Let Kij = κ(xi, xj) be a symmetric positive-semi-definite
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affinity function, e.g. Kij = exp−‖xi−xj‖2/σ2
. Then, the problem of finding the cluster assignments

by maximizing:

max
ψ1,...,ψk

k∑
j=1

1
nj

∑
(r,s)∈ψj

Kr,s, (1)

is equivalent to minimizing the ”kernel K-means” problem:

min
c1,...,ckψ1,...,ψk

k∑
j=1

∑
i∈ψj

‖φ(xi)− cj‖2,

where φ(xi) is a mapping associated with the kernel κ(xi, xj) = φ(xi)>φ(xj) and cj =
(1/nj)

∑
i∈ψj

φ(xi) are the class centers. After some algebraic manipulations it can be shown
that the optimization setup of eqn. 1 is equivalent to the matrix form:

max
G

tr(G>KG) s.t G ≥ 0, GG>1 = 1, G>G = I (2)

where G is the desired assignment matrix with Gij = 1/√nj if i ∈ ψj and zero otherwise, and
1 is a column vector of ones. Note that the feasible set of matrices satisfying the constraints G ≥
0, GG>1 = 1, G>G = I are of this form for some partitioning ψ1, ..., ψk. Note also that the matrix
F = GG> must be doubly stochastic (F is non-negative, symmetric and F1 = 1).

Taken together, we see that the desire is to find a doubly-stochastic matrix F as close as possi-
ble to the input matrix K (in the sense that

∑
ij FijKij is maximized over all feasible F ), such

that the symmetric decomposition F = GG> satisfies non-negativity (G ≥ 0) and orthonormality
constraints (G>G = I).

To see the connection with spectral clustering, and N-cuts in particular, relax the non-negativity
condition of eqn. 2 and define a two-stage approach: find the closest doubly stochastic matrix K ′ to
K and we are left with a spectral decomposition problem:

max
G

tr(G>K ′G) s.t G>G = I (3)

whereG contains the leading k eigenvectors ofK ′. We will refer to the process of transformingK to
K ′ as a normalization step. In N-cuts, the normalization takes the formK ′ = D−1/2KD−1/2 where
D = diag(K1) (a diagonal matrix containing the row sums of K) [9]. In [11] it was shown that
repeating the N-cuts normalization, i.e., setting up the iterative step K(t+1) = D−1/2K(t)D−1/2

where D = diag(K(t)1) and K(0) = K converges to a doubly-stochastic matrix (a symmetric
version of the well known ”iterative proportional fitting procedure” [8]).

The conclusion of this brief background is to highlight the motivation for seeking a doubly-stochastic
approximation to the input affinity matrix as part of the clustering process. The open issue is under
what error measure is the approximation to take place? It is not difficult to show that repeating
the N-cuts normalization converges to the global optimum under the relative entropy measure (see
Appendix). Noting that spectral clustering optimizes the Frobenius norm it seems less natural to
have the normalization step optimize a relative entropy error measure.

We will derive in this paper the normalization under the L1 norm and under the Frobenius norm. The
purpose of the L1 norm is to show that the resulting scheme is equivalent to a ratio-cut clustering
— thereby not introducing a new clustering scheme but only contributing to the unification and
better understanding the differences between the N-cuts and Ratio-cuts schemes. The Frobenius
norm normalization is a new formulation and is based on a simple iterative scheme. The resulting
normalization provides a new clustering performance which proves quite practical and boosts the
clustering performance in many of the standardized tests we conducted.

3 Ratio-cut and the L1 Normalization

Given that our desire is to find a doubly stochastic approximation K ′ to the input affinity matrix K,
we begin with the L1 norm approximation:



Proposition 1 (ratio-cut) The closest doubly stochastic matrix K ′ under the L1 error norm is

K ′ = K −D + I,

which leads to the ratio-cut clustering algorithm, i.e., the partitioning of the data set into two clusters
is determined by the second smallest eigenvector of the Laplacian D −K, where D = diag(K1).

Proof: Let r = minF ‖K − F‖1 s.t. F1 = 1, F = F>, where ‖A‖1 =
∑
ij abs(Aij) is the L1

norm. Since ‖K − F‖1 ≥ ‖(K − F )1‖1 for any matrix F , we must have:

r ≥ ‖(K − F )1‖1 = ‖D1− 1‖1 = ‖D − I‖1.

Let F = K −D + I , then

‖K − (K −D + I)‖1 = ‖D − I‖1.

If v is an eigenvector of the Laplacian D − K with eigenvalue λ, then v is also an eigenvector of
K ′ = K − D + I with eigenvalue 1 − λ and since (D − K)1 = 0 then the smallest eigenvector
v = 1 of the Laplacian is the largest of K ′, and the second smallest eigenvector of the Laplacian
(the ratio-cut result) corresponds to the second largest eigenvector of K ′.

What we have so far is that the difference between N-cuts and Ratio-cuts as two popular spectral
clustering schemes is that the former uses the relative entropy error measure in finding a doubly
stochastic approximation to K and the latter uses the L1 norm error measure (which turns out to be
the negative Laplacian with an added identity matrix).

4 Normalizing under Frobenius Norm

Given that spectral clustering optimizes the Frobenius norm, there is a strong argument in favor of
finding a Frobenius-norm optimum doubly stochastic approximation to K. The optimization setup
is that of a quadratic linear programming (QLP). However, the special circumstances of our problem
render the solution to the QLP to consist of a very simple iterative computation, as described next.

The closest doubly-stochastic matrixK ′ under Frobenius norm is the solution to the following QLP:

K ′ = argminF ‖K − F‖2F s.t. F ≥ 0, F1 = 1, F = F>, (4)

where ‖A‖2F =
∑
ij A

2
ij is the Frobenius norm. We define next two sub-problems, each with a

closed-form solution, and have our QLP solution derived by alternating successively between the
two until convergence. Consider the affine sub-problem:

P1(X) = argminF ‖X − F‖2F s.t. F1 = 1, F = F> (5)

and the convex sub-problem:

P2(X) = argminF ‖X − F‖2F s.t. F ≥ 0 (6)

We will use the Von-Neumann [5] successive projection lemma stating that P1P2P1P2...P1(K) will
converge onto the projection of K onto the intersection of the affine and conic subspaces described
above1. Therefore, what remains to show is that the projections P1 and P2 can be solved efficiently
(and in closed form).

We begin with the solution for P1. The Lagrangian corresponding to eqn. 5 takes the form:

L(F, µ1, µ2) = trace(F>F − 2X>F )− µ>1 (F1− 1)− µ>2 (F>1− 1),

where from the condition F = F> we have that µ1 = µ2 = µ. Setting the derivative with respect
to F to zero yields:

F = X + µ1> + 1µ>.

1actually, the Von-Neumann lemma applies only to linear subspaces. The extension to convex subspaces
involves a ”deflection” component described by Dykstra [3]. However, it is possible to show that for this
specific problem the deflection component is redundant and the Von-Neumann lemma still applies.
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Figure 1: Running times of the normalization algorithms. (a) the Frobenius scheme compared to a general
Matlab QLP solver, (b) running time of the three normalization schemes.

Isolate µ by multiplying by 1 on both sides: µ = (nI + 11>)−1(I − X)1. Noting that (nI +
11>)−1 = (1/n)(I − (1/2n)11>) we obtain a closed form solution:

P1(X) = X +

(
1
n
I +

1>X1
n2

I − 1
n
X

)
11> − 1

n
11>X. (7)

The projection P2(X) can also be described in a simple closed form manner. Let I+ be the set of
indices corresponding to non-negative entries of X and I− the set of negative entries of X . The
criterion function ‖X − F‖2F becomes:

‖X − F‖2F =
∑

(i,j)∈I+

(Xij − Fij)2 +
∑

(i,j)∈I−

(Xij − Fij)2.

Clearly, the minimum energy over F ≥ 0 is obtained when Fij = Xij for all (i, j) ∈ I+ and zero
otherwise. Let th≥0(X) stand for the operator that zeroes out all negative entries of X . Then,

P2(X) = th≥0(X).

To conclude, the global optimum of eqn. 4 which returns the closest doubly stochastic matrix K ′ in
Frobenius error norm to the input affinity matrix K is obtained by repeating the following steps:

Algorithm 1 (Frobenius-optimal Doubly Stochastic Normalization) finds the closest doubly
stochastic approximation in Frobenius error norm to a given matrix K (global optimum of eqn. 4).

1. Let X(0) = K.

2. Repeat t = 0, 1, 2, ...

(a) X(t+1) = P1(X(t))
(b) IfX(t+1) ≥ 0 then stop and setK ′ = X(t+1), otherwise setX(t+1) = th≥0(X(t+1)).

This algorithm is simple and very efficient. Fig. 1a shows the running time of the algorithm com-
pared to an off-the-shelf QLP Matlab solver over random matrices of increasing size — one can see
that the run-time of our algorithm is a fraction of the standard QLP solver and scales very well with
dimension. In fact the standard QLP solver can handle only small problem sizes. In Fig. 1b we plot
the running times of all three normalization schemes: the L1 norm (computing the Laplacian), the
relative-entropy (the iterative D−1/2KD−1/2), and the Frobenius scheme presented in this section.
The Frobenius is more efficient than the relative-entropy normalization (which is the least efficient
among the three).

5 Experiments

For the clustering algorithm into k ≥ 2 clusters we experimented with the spectral algorithms
described in [10] and [6]. The latter uses the N-cuts normalization D−1/2KD−1/2 followed by
K-means on the embedded coordinates (the leading k eigenvectors of the normalized affinity) and



the former uses a certain discretization scheme to turn the k leading eigenvectors into an indica-
tor matrix. Both algorithms produced similar results thus we focused on [10] while replacing the
normalization with the three schemes presented above. We refer to ”Ncuts” as the original normal-
ization D−1/2KD−1/2, by ”RE” to the iterative application of the original normalization (which is
proven to converge to a doubly stochastic matrix [11]), by ”L1” to the L1 doubly-stochastic nor-
malization (which we have shown is equivalent to Ratio-cuts) and by ”Frobenius” to the iterative
Frobenius scheme based on Von-Neumann’s lemma described in Section 4. We also included a
”None” field which corresponds to no normalization being applied.

Dataset Kernel k Size Dim. Lowest Error Rate
L1 Frobenius RE NCuts None

SPECTF heart RBF 2 267 44 27.5 19.2 27.5 27.5 29.5
Pima RBF 2 768 8 36.2 35.2 34.9 35.2 35.4
Wine RBF 3 178 13 38.8 27.0 34.3 29.2 27.5
SpamBase RBF 2 4601 57 36.1 30.3 37.7 31.8 30.4
BUPA Poly 2 345 6 37.4 37.4 41.7 41.7 37.4
WDBC Poly 2 569 30 18.8 11.1 37.4 37.4 18.8

Table 1: UCI datasets used, together with some characteristics and the best result achieved using the different
methods.

Dataset Kernel k Size #PC Lowest Error Rate
L1 Frobenius RE NCuts None

Leukemia Poly 2 72 5 27.8 16.7 36.1 38.9 30.6
Lung Poly 2 181 5 15.5 9.9 16.6 15.5 15.5
Prostate RBF 2 136 5 40.4 19.9 43.4 40.4 40.4
Prostate Outcome RBF 2 21 5 28.6 4.8 23.8 28.6 28.6

Table 2: Cancer datasets used, together with some characteristics and the best result achieved using the differ-
ent methods.

We begin with evaluating the clustering quality obtained under the different normalization methods
taken over a number of well studied datasets from the UCI repository2. The data-sets are listed
in Table 1 together with some of their characteristics. The best performance (lowest error rate)

is presented in Boldface. With the first four datasets we used an RBF kernel e
‖xi−xj‖

2

σ2 for the
affinity matrix, while for the latter two a polynomial kernel (xTi xj + 1)d was used. The kernel
parameters were calibrated independently for each method and for each dataset. In most cases the
best performance was obtained with the Frobenius norm approximation, but as a general rule the type
of normalization depends on the data. Also worth noting are instances, such as Wine and SpamBase,
when the RE or Ncuts actually worsen the performance. In that case the RE performance is worse
the Ncuts as the entire normalization direction is counter-productive. When RE outperforms None
it also outperforms Ncuts (as can be expected since Ncuts is the first step in the iterative scheme of
RE).

With regard to tuning the affinity measure, we show in Fig. 2 the clustering performance of each
dataset under each normalization scheme under varying kernel setting (σ and d values). Generally,
the performance of the Frobenius normalization behaves in a smoother manner and is more stable
under varying kernel settings than the other normalization schemes.

Our next set of experiments was over some well studied cancer data-sets3. The data-sets are listed
in Table 2 together with some of their characteristics. The column ”#PC” refers to the number of
principal components used in a PCA pre-processing for the purpose of dimensionality reduction
prior to clustering. Note that better results can be achieved when using a more sophisticated pre-
processing, but since the focus is on the performances of the clustering algorithms and not on the
datasets, we prefer not to use the optimal pre-processing and leave the data noisy. The AML/ALL

2http://www.ics.uci.edu/∼ mlearn/MLRepository.html
3All cancer datasets can be found at http://sdmc.i2r.a-star.edu.sg/rp/
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Figure 2: Error rate vs. similarity measure, for the UCI datasets listed in Table 1
L1 in magenta +; Forbenius in blue o; Relative Entropy in black ×; and Normalized-Cuts in red
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Figure 3: Error rate vs. similarity measure, for the cancer datasets listed in Table 2.
L1 in magenta +; Forbenius in blue o; Relative Entropy in black ×; and Normalized-Cuts in red

Leukemia dataset is a challenging benchmark common in the cancer community, where the task is
to distinguish between two types of Leukemia. The original dataset consists of 7129 coordinates
probed from 6817 human genes, and we perform PCA to obtain 5 leading principal components
prior to clustering using a polynomial kernel. Lung Cancer (Brigham and Women’s Hospital, Har-
vard Medical School) dataset is another common benchmark that describes 12533 genes sampled
from 181 tissues. The task is to distinguish between malignant pleural mesothelioma (MPM) and
adenocarcinoma (ADCA) of the lung. The Prostate dataset consists of 12,600 coordinates represent-
ing different genes, where the task is to identify prostate samples as tumor or non-tumor. We use the
first five principal components as input for clustering using an RBF kernel. The Prostate Outcome
dataset uses the same genes from another set of prostate samples, where the task is to predict the
clinical outcome (relapse or non-relapse for at least four years). Finally, Fig. 3 shows the clustering
performance of each dataset under each normalization scheme under varying kernel settings (σ and
d values).

6 Summary

Normalization of the affinity matrix is a crucial element in the success of spectral clustering. The
type of normalization performed by N-cuts is a step towards a doubly-stochastic approximation of
the affinity matrix under relative entropy [11]. In this paper we have extended the normalization
via doubly-stochasticity in three ways: (i) we have shown that the difference between N-Cuts and
Ratio-cuts is in the error measure used to find the closest doubly stochastic approximation to the
input affinity matrix, (ii) we have introduced a new normalization scheme based on Frobenius norm
approximation. The scheme involves a succession of simple computations, is very simple to imple-
ment and is efficient computation-wise, and (iii) throughout extensive experimentation on standard
data-sets we have shown the importance of normalization to the performance of spectral clustering.



In the experiments we have conducted the Frobenius normalization had the upper-hand in most
cases. We have also shown that the relative-entropy normalization is not always the right approach
as in some data-sets the performance worsened after the relative-entropy but never worsened when
the Frobenius normalization was applied.
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A Normalized Cuts and Relative Entropy Normalization

The following proposition is an extension (symmetric version) of the claim about the iterative pro-
portional fitting procedure converging in relative entropy error measure [2]:

Proposition 2 The closest doubly-stochastic matrix F under the relative-entropy error measure to
a given symmetric matrix K, i.e., which minimizes:

min
F

RE(F ||K) s.t. F ≥ 0, F = F>, F1 = 1, F>1 = 1

has the form F = DKD for some (unique) diagonal matrix D.

Proof: The Lagrangian of the problem is:

L() =
∑
ij

fij ln
fij
kij

+
∑
ij

kij −
∑
ij

fij −
∑
i

λi(
∑
j

fij − 1)−
∑
j

µj(
∑
i

fij − 1)

The derivative with respect to fij is:
∂L

∂fij
= ln fij + 1− ln kij − 1− λi − µj = 0

from which we obtain:
fij = eλieµjkij

Let D1 = diag(eλ1 , ..., eλn) and D2 = diag(eµ1 , ..., eµn), then we have:
F = D1KD2

Since F = F> and K is symmetric we must have D1 = D2.


