
Approximate Correspondences in High Dimensions

Kristen Grauman
Department of Computer Sciences

University of Texas at Austin
grauman@cs.utexas.edu

Trevor Darrell
CS and AI Laboratory

Massachusetts Institute of Technology
trevor@csail.mit.edu

Abstract

Pyramid intersection is an efficient method for computing an approximate partial
matching between two sets of feature vectors. We introduce a novel pyramid em-
bedding based on a hierarchy of non-uniformly shaped bins that takes advantage
of the underlying structure of the feature space and remains accurate even for sets
with high-dimensional feature vectors. The matching similarity is computed in
linear time and forms a Mercer kernel. Whereas previous matching approxima-
tion algorithms suffer from distortion factors that increase linearly with the fea-
ture dimension, we demonstrate that our approach can maintain constant accuracy
even as the feature dimension increases. When used as a kernel in a discrimina-
tive classifier, our approach achieves improved object recognition results over a
state-of-the-art set kernel.

1 Introduction

When a single data object is described by a set of feature vectors, it is often useful to consider
the matching or “correspondence” between two sets’ elements in order to measure their overall
similarity or recover the alignment of their parts. For example, in computer vision, images are often
represented as collections of local part descriptions extracted from regions or patches (e.g., [11, 12]),
and many recognition algorithms rely on establishing the correspondence between the parts from
two images to quantify similarity between objects or localize an object within the image [2, 3, 7].
Likewise, in text processing, a document may be represented as a bag of word-feature vectors; for
example, Latent Semantic Analysis can be used to recover a “word meaning” subspace on which
to project the co-occurrence count vectors for every word [9]. The relationship between documents
may then be judged in terms of the matching between the sets of local meaning features.

The critical challenge, however, is to compute the correspondences between the feature sets in an
efficient way. The optimal correspondences—those that minimize the matching cost—require cubic
time to compute, which quickly becomes prohibitive for sizeable sets and makes processing realistic
large data sets impractical. Due to the optimal matching’s complexity, researchers have developed
approximation algorithms to compute close solutions for a fraction of the computational cost [4, 8,
1, 7]. However, previous approximations suffer from distortion factors that increase linearly with
the dimension of the features, and they fail to take advantage of structure in the feature space.

In this paper we present a new algorithm for computing an approximate partial matching between
point sets that can remain accurate even for sets with high-dimensional feature vectors, and benefits
from taking advantage of the underlying structure in the feature space. The main idea is to derive a
hierarchical, data-dependent decomposition of the feature space that can be used to encode feature
sets as multi-resolution histograms with non-uniformly shaped bins. For two such histograms (pyra-
mids), the matching cost is efficiently calculated by counting the number of features that intersect
in each bin, and weighting these match counts according to geometric estimates of inter-feature dis-
tances. Our method allows for partial matchings, which means that the input sets can have varying
numbers of features in them, and outlier features from the larger set can be ignored with no penalty

to the matching cost. The matching score is computed in time linear in the number of features per
set, and it forms a Mercer kernel suitable for use within existing kernel-based algorithms.

In this paper we demonstrate how, unlike previous set matching approximations (including our orig-
inal pyramid match algorithm [7]), the proposed approach can maintain consistent accuracy as the
dimension of the features within the sets increases. We also show how the data-dependent hierarchi-
cal decomposition of the feature space produces more accurate correspondence fields than a previous
approximation that uses a uniform decomposition. Finally, using our matching measure as a kernel
in a discriminative classifier, we achieve improved object recognition results over a state-of-the-art
set kernel on a benchmark data set.

2 Related Work

Several previous matching approximation methods have also considered a hierarchical decomposi-
tion of the feature space to reduce matching complexity, but all suffer from distortion factors that
scale linearly with the feature dimension [4, 8, 1, 7]. In this work we show how to alleviate this
decline in accuracy for high-dimensional data by tuning the hierarchical decomposition according
to the particular structure of the data, when such structure exists.

We build on our pyramid match algorithm [7], a partial matching approximation that also uses
histogram intersection to efficiently count matches implicitly formed by the bin structures. However,
in contrast to [7], our use of data-dependent, non-uniform bins and a more precise weighting scheme
results in matchings that are consistently accurate for structured, high-dimensional data.

The idea of partitioning a feature space with vector quantization (VQ) is fairly widely used in prac-
tice; in the vision literature in particular, VQ has been used to establish a vocabulary of prototypical
image features, from “textons” to the “visual words” of [16]. A variant of the pyramid match ap-
plied to spatial features was shown to be effective for matching quantized features in [10]. More
recently, the authors of [13] have shown that a tree-structured vector quantization (TSVQ [5]) of im-
age features provides a scalable means of indexing into a very large feature vocabulary. The actual
tree structure employed is similar to the one constructed in this work; however, whereas the authors
of [13] are interested in matching individual features to one another to access an inverted file, our
approach computes approximate correspondences betweensetsof features. Note the distinction be-
tween the problem we are addressing—approximate matchings between sets—and the problem of
efficiently identifying approximate or exact nearest neighbor feature vectors (e.g., viak-d trees): in
the former, the goal is a one-to-one correspondence between sets of vectors, whereas in the latter, a
single vector is independently matched to a nearby vector.

3 Approach

The main contribution of this work is a new very efficient approximate bipartite matching method
that measures the correspondence-based similarity between unordered, variable-sized sets of vec-
tors, and can optionally extract an explicit correspondence field. We call our algorithm the
vocabulary-guided(VG) pyramid match, since the histogram pyramids are defined by the “vocabu-
lary” or structure of the feature space, and the pyramids are used to count implicit matches.

The basic idea is to first partition the given feature space into a pyramid of non-uniformly shaped re-
gions based on the distribution of a provided corpus of feature vectors. Point sets are then encoded as
multi-resolution histograms determined by that pyramid, and an efficient intersection-based compu-
tation between any two histogram pyramids yields an approximate matching score for the original
sets. The implicit matching version of our method estimates the inter-feature distances based on
their respective distances to the bin centers. To produce an explicit correspondence field between
the sets, we use the pyramid construct to divide-and-conquer the optimal matching computation. As
our experiments will show, the proposed algorithm in practice provides a good approximation to the
optimal partial matching, but is orders of magnitude faster to compute.

Preliminaries: We consider a feature spaceF of d-dimensional vectors,F ⊆ <d. The point sets
our algorithm matches will come from the input spaceS, which contains sets of feature vectors
drawn fromF : S = {X|X = {x1, . . . ,xm}}, where eachxi ∈ F , and the valuem = |X| may
vary across instances of sets inS. Throughout the text we will use the terms feature, vector, and
point interchangeably to refer to the elements within a set.

(a) Uniform bins (b) Vocabulary-guided bins

Figure 1: Rather than carve the feature space into uniformly-shaped partitions (left), we let the vocabulary
(structure) of the feature space determine the partitions (right). As a result, the bins are better concentrated on
decomposing the space where features cluster, particularly for high-dimensional feature spaces. These figures
depict the grid boundaries for two resolution levels for a 2-D feature space. In both (a) and (b), the left plot
contains the coarser resolution level, and the right plot contains the finer one. Features are red points, bin
centers are larger black points, and blue lines denote bin boundaries.

A partial matching between two point sets is an assignment that maps all points in the smaller set
to some subset of the points in the larger (or equally-sized) set. Given point setsX andY, where
m = |X|, n = |Y|, andm ≤ n, a partial matchingM (X,Y;π) = {(x1,yπ1

), . . . , (xm,yπm
)}

pairs each point inX to some unique point inY according to the permutation of indices specified
by π = [π1, . . . , πm], 1 ≤ πi ≤ n, whereπi specifies which pointyπi

∈ Y is matched toxi ∈ X,
for 1 ≤ i ≤ m. The cost of a partial matching is the sum of the distances between matched points:
C (M(X,Y;π)) =

∑
xi∈X

||xi − yπi
||2. The optimal partial matchingM(X,Y;π∗) uses the

assignmentπ∗ that minimizes this cost:π∗ = argminπ C (M(X,Y;π)). It is this matching that
we wish to efficiently approximate. In Section 3.2 we describe how our algorithm approximates
the costC (M(X,Y;π∗)); for a small increase in computational cost we can also extract explicit
correspondences to estimateπ∗ itself.

3.1 Building Vocabulary-Guided Pyramids

The first step is to generate the structure of the vocabulary-guided (VG) pyramid to define the bin
placement for the multi-resolution histograms used in the matching. This is a one-time process
performed before any matching takes place. We would like the bins in the pyramid to follow the
feature distribution and concentrate partitions where the features actually fall. To accomplish this,
we perform hierarchical clustering on a sample of representative feature vectors fromF .

We randomly select some example feature vectors from the feature type of interest to form the repre-
sentative feature corpus, and perform hierarchicalk-means clustering with the Euclidean distance to
build the pyramid tree. Other hierarchical clustering techniques, such as agglomerative clustering,
are also possible and do not change the operation of the method. For this unsupervised clustering
process there are two parameters: the number of levels in the treeL, and the branching factork.
The initial corpus of features is clustered intok top-level groups, where group membership is deter-
mined by the Voronoi partitioning of the feature corpus according to thek cluster centers. Then the
clustering is repeated recursivelyL − 1 times on each of these groups, filling out a tree withL total
levels containingki bins (nodes) at leveli, where levels are counted from the root (i= 0) to the
leaves (i= L − 1). The bins are irregularly shaped and sized, and their boundaries are determined
by the Voronoi cells surrounding the cluster centers. (See Figure 1.) For each bin in the VG pyramid
we record its diameter, which we estimate empirically based on the maximal inter-feature distance
between any points from the initial feature corpus that were assigned to it.

Once we have constructed a VG pyramid, we can embed point sets fromS as multi-resolution
histograms. A point’s placement in the pyramid is determined by comparing it to the appropriatek
bin centers at each of theL pyramid levels. The histogram count is incremented for the bin (among
thek choices) that the point is nearest to in terms of the same distance function used to cluster the
initial corpus. We then push the point down the tree and continue to increment finer level counts
only along the branch (bin center) that is chosen at each level. So a point is first assigned to one of
the top-level clusters, then it is assigned to one ofits children, and so on recursively. This amounts
to a total ofkL distances that must be computed between a point and the pyramid’s bin centers.

Given the bin structure of the VG pyramid, a point setX is mapped to its pyramid:Ψ(X) =
[H0(X), . . . ,HL−1(X)], with Hi(X) = [〈p, n, d〉1, . . . , 〈p, n, d〉ki], and whereHi(X) is a ki-
dimensional histogram associated with leveli in the pyramid,p ∈ Z

i for entries inHi(X), and

0 ≤ i < L. Each entry in this histogram is a triple〈p, n, d〉 giving the bin index, the bin count, and
the bin’s points’ maximal distance to the bin center, respectively.

Storing the VG pyramid itself requires space forO(kL) d-dimensional feature vectors, i.e., all of
the cluster centers. However, each point set’s histogram is stored sparsely, meaning onlyO(mL)
nonzero bin counts are maintained to encode the entire pyramid for a set withm features. This is
an important point: we do not storeO(kL) counts for every point set;Hi(X) is represented by at
mostm triples havingn > 0. We achieve a sparse implementation as follows: each vector in a set is
pushed through the tree as described above. At every leveli, we record a〈p, n, d〉 triple describing
the nonzero entry for the current bin. The vectorp = [p1, . . . , pi], pj ∈ [1, k] denotes the indices
of the clusters traversed from the root so far,n ∈ Z

+ denotes the count for the bin (initially 1),
andd ∈ < denotes the distance computed between the inserted point and the current bin’s center.
Upon reaching the leaf level,p is anL-dimensional path-vector indicating which of thek bins were
chosen at each level, and every path-vector uniquely identifies some bin on the pyramid.

Initially, an input set withm features yields a total ofmL such triples—there is one nonzero entry
per level per point, and each hasn = 1. Then each of theL lists of entries is sorted by the index
vectors (pin the triple), and they are collapsed to a list of sorted nonzero entries with unique indices:
when two or more entries with the same index are found, they are replaced with a single entry with
the same index forp, the summed counts forn, and the maximum distance ford. The sorting is done
in linear time using integer sorting algorithms. Maintaining the maximum distance of any point in a
bin to the bin center will allow us to efficiently estimate inter-point distances at the time of matching,
as described in Section 3.2.

3.2 Vocabulary-Guided Pyramid Match
Given two point sets’ pyramid encodings, we efficiently compute the approximate matching score
using a simple weighted intersection measure. The VG pyramid’s multi-resolution partitioning of
the feature space is used to direct the matching. The basic intuition is to start collecting groups of
matched points from the bottom of the pyramid up, i.e., from within increasingly larger partitions.
In this way, we will first consider matching the closest points (at the leaves), and as we climb to
the higher-level clusters in the pyramid we will allow increasingly further points to be matched. We
define the number ofnewmatches within a bin to be a count of the minimum number of points either
of the two input sets contributes to that bin, minus the number of matches already counted by any of
its child bins. A weighted sum of these counts yields an approximate matching score.

Let nij(X) denote the elementn from 〈p, n, d〉j , the jth bin entry of histogramHi(X), and let
ch (nij(X)) denote the elementn for the hth child bin of that entry,1 ≤ h ≤ k. Similarly, let
dij(X) refer to the elementd from the same triple. Given point setsX andY, we compute the
matching score via their pyramidsΨ(X) andΨ(Y) as follows:

C (Ψ(X), Ψ(Y)) =

L−1
X

i=0

ki
X

j=1

wij

"

min (nij(X), nij(Y)) −
k

X

h=1

min (ch (nij(X)) , ch (nij(Y)))

#

. (1)

The outer sum loops over the levels in the pyramids; the second sum loops over the bins at a given
level, and the innermost sum loops over the children of a given bin. The firstmin term reflects
the number of matchable points in the current bin, and the secondmin term tallies the number of
matches already counted at finer resolutions (in child bins). Note that as the leaf nodes have no
children, wheni = L − 1 the last sum is zero. All matches are new at the leaves. The matching
scores are normalized according to the size of the input sets in order to not favor larger sets.

The number of new matches calculated for a bin is weighted bywij , an estimate of the distance
between points contained in the bin.1 With a VG pyramid match there are two alternatives for the
distance estimate: (a) weights based on the diameters of the pyramid’s bins, or (b) input-dependent
weights based on the maximal distances of the points in the bin to its center. Option (a) is a con-
servative estimate of the actual inter-point distances in the bin if the corpus of features used to build
the pyramid is representative of the feature space; its advantages are that it provides a guaranteed
Mercer kernel (see below) and eliminates the need to store a distanced in the entry triples. Option
(b)’s input-specific weights estimate the distance between any two points in the bin as the sum of the
stored maximal to-center distances from either input set:wij = dij(X) + dij(Y). This weighting

1To use our matching as a cost function, weights are set as the distance estimates; to use as a similarity
measure or kernel, weights are set as (some function of) the inverse of the distance estimates.

gives a true upper bound on the furthest any two points could befrom one another, and it has the po-
tential to provide tighter estimates of inter-feature distances (as we confirm experimentally below);
however, we cannot guarantee this weighting will yield a Mercer kernel.

Just as we encode the pyramids sparsely, we derive a means to compute intersections in Eqn. 1
without ever traversing the entire pyramid tree. Given two sparse listsHi(X) andHi(Y) which have
been sorted according to the bin indices, we obtain the minimum counts in linear time by moving
pointers down the lists and processing only those nonzero entries that share an index, making the
time required to compute a matching between two pyramidsO(mL). A key aspect of our method is
that we obtain a measure of matching quality between two point sets without computing pair-wise
distances between their features—anO(m2) savings over sub-optimal greedy matchings. Instead,
we exploit the fact that the points’ placement in the pyramid reflects their distance from one another.
The only inter-feature distances computed are thekL distances needed to insert a point into the
pyramid, and this small one-time cost is amortized every time we re-use a histogram to approximate
another matching against a different point set.

We first suggested the idea of using histogram intersection to count implicit matches in a multi-
resolution grid in [7]. However, in [7], bins are constructed to uniformly partition the space, bin
diameters exponentially increase over the levels, and intersections are weighted indistinguishably
across an entire level. In contrast, here we have developed a pyramid embedding that partitions
according to the distribution of features, and weighting schemes that allow more precise approxima-
tions of the inter-feature costs. As we will show in Section 4, our VG pyramid match remains accu-
rate and efficient even for high-dimensional feature spaces, while the uniform-bin pyramid match is
limited in practice to relatively low-dimensional features.

For the increased accuracy our method provides, there are some complexity trade-offs versus [7],
which does not require computing any distances to place the points into bins; their uniform shape
and size allows points to be placed directly via division by bin size. On the other hand, sorting the
bin indices with the VG method has a lower complexity, since the values only range tok, the branch
factor, which is typically much smaller than the aspect ratio that bounds the range in [7]. In addition,
as we show in Section 4, in practice the cost of extracting anexplicit correspondence field using the
uniform-bin pyramid in high dimensions approaches the cubic cost of the optimal measure, whereas
it remains linear with the proposed approach, assuming features are not uniformly distributed.

Our approximation can be used to compare sets of vectors in any case where the presence of low-
cost correspondences indicates their similarity (e.g., nearest-neighbor retrieval). We can also employ
the measure as a kernel function for structured inputs. According to Mercer’s theorem, a kernel is
p.s.d if and only if it corresponds to an inner product in some feature space [15]. We can re-write

Eqn. 1 as:C (Ψ(X),Ψ(Y)) =
∑L−1

i=0

∑ki

j=1
(wij − pij) min (nij(X), nij(Y)), wherepij refers

to the weight associated with the parent bin of thejth node at leveli. Since themin operation is
p.d. [14], and since kernels are closed under summation and scaling by a positive constant [15], we
have that the VG pyramid match is a Mercer kernel ifwij ≥ pij . This inequality holds if every
child bin receives a similarity weight that is greater than its parent bin, or rather that every child
bin has a distance estimate that is less than that of its parent. Indeed this is the case for weighting
option (a), wherewij is inversely proportional to the diameter of the bin. It holds by definition of the
hierarchical clustering: the diameter of a subset of points must be less than or equal to the diameter
of all those points. We cannot make this guarantee for weighting option (b).

In addition to scalar matching scores, we can optionally extract explicit correspondence fields
through the pyramid. In this case, the VG pyramid decomposes the required matching computa-
tion into a hierarchy of smaller matchings. Upon encountering a bin with a nonzero intersection,
the optimal matching is computed between only those features from the two sets that fall into that
particular bin. All points that are used in that per-bin matching are then flagged as matched and may
not take part in subsequent matchings at coarser resolutions of the pyramid.

4 Results
In this section, we provide results to empirically demonstrate our matching’s accuracy and efficiency
on real data, and we compare it to a pyramid match using a uniform partitioning of the feature
space. In addition to directly evaluating the matching scores and correspondence fields, we show
that our method leads to improved object recognition performance when used as a kernel within a
discriminative classifier.

