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Abstract

In supervised learning scenarios, feature selection has been studied
widely in the literature. Selecting features in unsupervised learning sce-
narios is a much harder problem, due to the absence of class labels that
would guide the search for relevant information. And, almost all of pre-
vious unsupervised feature selection methods are “wrapper” techniques
that require a learning algorithm to evaluate the candidate feature subsets.
In this paper, we propose a “filter” method for feature selection which is
independent of any learning algorithm. Our method can be performed in
either supervised or unsupervised fashion. The proposed method is based
on the observation that, in many real world classification problems, data
from the same class are often close to each other. The importance of a
feature is evaluated by its power of locality preserving, or,Laplacian
Score. We compare our method with data variance (unsupervised) and
Fisher score (supervised) on two data sets. Experimental results demon-
strate the effectiveness and efficiency of our algorithm.

1 Introduction

Feature selection methods can be classified into “wrapper” methods and “filter” methods
[4]. The wrapper model techniques evaluate the features using the learning algorithm that
will ultimately be employed. Thus, they “wrap” the selection process around the learning
algorithm. Most of the feature selection methods are wrapper methods. Algorithms based
on the filter model examine intrinsic properties of the data to evaluate the features prior to
the learning tasks. The filter based approaches almost always rely on the class labels, most
commonly assessing correlations between features and the class label. In this paper, we
are particularly interested in the filter methods. Some typical filter methods include data
variance, Pearson correlation coefficients, Fisher score, and Kolmogorov-Smirnov test.

Most of the existing filter methods are supervised. Data variance might be the simplest
unsupervisedevaluation of the features. The variance along a dimension reflects its repre-
sentative power. Data variance can be used as a criteria for feature selection and extraction.
For example, Principal Component Analysis (PCA) is a classical feature extraction method
which finds a set of mutually orthogonal basis functions that capture the directions of max-
imum variance in the data.

Although the data variance criteria finds features that are useful for representing data, there



is no reason to assume that these features must be useful for discriminating between data in
different classes. Fisher score seeks features that are efficient for discrimination. It assigns
the highest score to the feature on which the data points of different classes are far from
each other while requiring data points of the same class to be close to each other. Fisher
criterion can be also used for feature extraction, such as Linear Discriminant Analysis
(LDA).

In this paper, we introduce a novel feature selection algorithm calledLaplacian Score(LS).
For each feature, its Laplacian score is computed to reflect its locality preserving power.
LS is based on the observation that, two data points are probably related to the same topic
if they are close to each other. In fact, in many learning problems such as classification,
the local structure of the data space is more important than the global structure. In order to
model the local geometric structure, we construct a nearest neighbor graph. LS seeks those
features that respect this graph structure.

2 Laplacian Score

Laplacian Score (LS) is fundamentally based on Laplacian Eigenmaps [1] and Locality
Preserving Projection [3]. The basic idea of LS is to evaluate the features according to their
locality preserving power.

2.1 The Algorithm

Let Lr denote the Laplacian Score of ther-th feature. Letfri denote thei-th sample of the
r-th feature,i = 1, · · · ,m. Our algorithm can be stated as follows:

1. Construct a nearest neighbor graphG with m nodes. Thei-th node corresponds
to xi. We put an edge between nodesi andj if xi andxj are ”close”, i.e.xi is
amongk nearest neighbors ofxj or xj is amongk nearest neighbors ofxi. When
the label information is available, one can put an edge between two nodes sharing
the same label.

2. If nodesi andj are connected, putSij = e−
‖xi−xj‖2

t , wheret is a suitable constant.
Otherwise, putSij = 0. The weight matrixS of the graph models the local
structure of the data space.

3. For ther-th feature, we define:

fr = [fr1, fr2, · · · , frm]T , D = diag(S1), 1 = [1, · · · , 1]T , L = D − S

where the matrixL is often called graph Laplacian [2]. Let

f̃r = fr −
fTr D1

1T D1
1

4. Compute the Laplacian Score of ther-th feature as follows:

Lr =
f̃
T

r L̃fr

f̃
T

r Df̃r
(1)

3 Justification

3.1 Objective Function

Recall that given a data set we construct a weighted graphG with edges connecting nearby
points to each other.Sij evaluates the similarity between thei-th andj-th nodes. Thus,



the importance of a feature can be thought of as the degree it respects the graph structure.
To be specific, a ”good” feature should the one on which two data points are close to each
other if and only if there is an edge between these two points. A reasonable criterion for
choosing a good feature is to minimize the following object function:

Lr =

∑
ij(fri − frj)

2Sij

V ar(fr)
(2)

whereV ar(fr) is the estimated variance of ther-th feature. By minimizing
∑

ij(fri −

frj)
2Sij , we prefer those features respecting the pre-defined graph structure. For a good

feature, the biggerSij , the smaller(fri − frj), and thus the Laplacian Score tends to be
small. Following some simple algebraic steps, we see that

∑

ij

(fri − frj)
2
Sij =

∑

ij

(
f2

ri + f2
rj − 2frifrj

)
Sij

= 2
∑

ij

f2
riSij − 2

∑

ij

friSijfrj = 2fTr Dfr − 2fTr Sfr = 2fTr Lfr

By maximizingV ar(fr), we prefer those features with large variance which have more
representative power. Recall that the variance of a random variablea can be written as
follows:

V ar(a) =

∫

M

(a − µ)2dP (a), µ =

∫

M

adP (a)

whereM is the data manifold,µ is the expected value ofa and dP is the probability
measure. By spectral graph theory [2],dP can be estimated by the diagonal matrixD on
the sample points. Thus, theweighted data variance can be estimated as follows:

V ar(fr) =
∑

i(fri − µr)
2Dii

µr =
∑

i

(
fri

Dii∑
i
Dii

)
= 1

(
∑

i
Dii)

(
∑

i friDii) =
fTr D1
1T D1

To remove the mean from the samples, we define:

f̃r = fr −
fTr D1

1T D1
1

Thus,

V ar(fr) =
∑

i

f̃
2

riDii = f̃
T

r Df̃r

Also, it is easy to show that̃f
T

r L̃fr = fTr Lfr (please see Proposition 1 in Section 4.2 for
detials). We finally get equation (1).

It would be important to note that, if we do not remove the mean, the vectorfr can be a non-
zero constant vector such as1. It is easy to check that,1T L1 = 0 and1T D1 > 0. Thus,
Lr = 0. Unfortunately, this feature is clearly of no use since it contains no information.
With mean being removed, the new vectorf̃r is orthogonal to1 with respect toD, i.e.

f̃
T

r D1 = 0. Therefore,̃fr can not be any constant vector other than0. If f̃r = 0, f̃
T

r L̃fr =

f̃
T

r Df̃r = 0. Thus, the Laplacian ScoreLr becomes a trivial solution and ther-th feature
is excluded from selection. While computing the weighted variance, the matrixD models
the importance (or local density) of the data points. We can also simply replace it by the
identity matrixI, in which case the weighted variance becomes the standard variance. To
be specific,

f̃r = fr −
fTr I1

1T I1
1 = fr −

fTr 1
n

1 = fr − µ1



whereµ is the mean offri, i = 1, · · · , n. Thus,

V ar(fr) = f̃
T

r I f̃r =
1

n
(fr − µ1)

T
(fr − µ1) (3)

which is just thestandardvariance.

In fact, the Laplacian scores can be thought of as the Rayleigh quotients for the features
with respect to the graphG, please see [2] for details.

3.2 Connection to Fisher Score

In this section, we provide a theoretical analysis of the connection between our algorithm
and the canonical Fisher score.

Given a set of data points with label,{xi, yi}
n
i=1, yi ∈ {1, · · · , c}. Let ni denote the

number of data points in classi. Let µi and σ2
i be the mean and variance of classi,

i = 1, · · · , c, corresponding to ther-th feature. Letµ andσ2 denote the mean and variance
of the whole data set. The Fisher score is defined below:

Fr =

∑c

i=1
ni(µi − µ)2∑c

i=1
niσ

2
i

(4)

In the following, we show that Fisher score is equivalent to Laplacian score with a special
graph structure. We define the weight matrix as follows:

Sij =

{
1

nl
, yi = yj = l;

0, otherwise.
(5)

Without loss of generality, we assume that the data points are ordered according to which
class they are in, so that{x1, · · · , xn1

} are in the first class,{xn1+1, · · · , xn1+n2
} are in

the second class, etc. Thus,S can be written as follows:

S =




S1 0 0

0
. .. 0

0 0 Sc




whereSi = 1

ni
11T is anni × ni matrix. For eachSi, the raw (or column) sum is equal

to 1, soDi = diag(Si1) is just the identity matrix. Definef1r = [fr1, · · · , frn1
]T , f2r =

[fr,n1+1, · · · , fr,n1+n2
]T , etc. We now make the following observations.

Observation 1 With the weight matrixS defined in (5), we havẽf
T

r L̃fr = fTr Lfr =∑
i niσ

2
i , whereL = D − S.

To see this, defineLi = Di − Si = Ii − Si, whereIi is theni × ni identity matrix. We
have

fTr Lfr =

c∑

i=1

(fir)
T Lif

i
r =

c∑

i=1

(fir)
T (Ii −

1

ni

11T )fir =

c∑

i=1

nicov(fir, fir) =

c∑

i=1

niσ
2
i

Note that, sinceuT L1 = 1T Lu = 0, ∀u ∈ R
n, the value offTr Lfr remains unchanged by

subtracting a constant vector (=α1) from fr. This shows that̃f
T

r L̃fr = fTr Lfr =
∑

i niσ
2
i .

Observation 2With the weight matrixS defined in (5), we havẽf
T

r Df̃r = nσ2.

To see this, by the definition ofS, we haveD = I. Thus, this is a immediate result from
equation (3).



Observation 3 With the weight matrixS defined in (5), we have
∑c

i=1
ni(µi − µ)2 =

f̃
T

r Df̃r − f̃
T

r L̃fr.

To see this, notice
c∑

i=1

ni(µi − µ)2 =

c∑

i=1

(
niµ

2
i − 2niµiµ + niµ

2
)

=

c∑

i=1

1

ni

(niµi)
2 − 2µ

c∑

i=1

niµi + µ2

c∑

i=1

ni =

c∑

i=1

1

ni

(
(fir)

T 11T fir
)
− 2nµ2 + nµ2

=

c∑

i=1

firSif
i
r −

1

n
(nµ)2 = fTr Sfr − fTr (

1

n
11T )fr

= fTr (I − S)fr − fTr (I −
1

n
11T )fr = fTr Lfr − nσ2 = f̃

T

r L̃f
T

r − f̃
T

r Df̃
T

r

This completes the proof.

We therefore get the following relationship between the Laplacian score and Fisher score:

Theorem 1 Let Fr denote the Fisher score of ther-th feature. With the weight matrixS
defined in (5), we haveLr = 1

1+Fr
.

Proof From observations 1,2,3, we see that

Fr =

∑c

i=1
ni(µi − µ)2∑c

i=1
niσ

2
i

=
f̃
T

r Df̃
T

r − f̃
T

r L̃f
T

r

f̃
T

r L̃f
T

r

=
1

Lr

− 1

Thus,Lr = 1

1+Fr
.

4 Experimental Results

Several experiments were carried out to demonstrate the efficiency and effectiveness of our
algorithm. Our algorithm is a unsupervised filter method, while almost all the existing filter
methods are supervised. Therefore, we compared our algorithm with data variance which
can be performed in unsupervised fashion.

4.1 UCI Iris Data

Iris dataset, popularly used for testing clustering and classification algorithms, is taken from
UCI ML repository. It contains 3 classes of 50 instances each, where each class refers to
a type of Iris plant. Each instance is characterized by four features, i.e. sepal length, sepal
width, petal length, and petal width. One class is linearly separable from the other two,
but the other two are not linearly separable from each other. Out of the four features it is
known that the features F3 (petal length) and F4 (petal width) are more important for the
underlying clusters.

The class correlation for each feature is 0.7826, -0.4194, 0.9490 and 0.9565. We also used
leave-one-out strategy to do classification by using each single feature. We simply used the
nearest neighbor classifier. The classification error rates for the four features are 0.41, 0.52,
0.12 and 0.12, respectively. Our analysis indicates that F3 and F4 are better than F1 and F2
in the sense of discrimination. In figure 1, we present a 2-D visualization of the Iris data.

We compared three methods, i.e. Variance, Fisher score and Laplacian Score for feature
selection. All of them are filter methods which are independent to any learning tasks.
However, Fisher score is supervised, while the other two are unsupervised.
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Figure 1: 2-D visualization of the Iris data.

By using variance, the four features are sorted as F3, F1, F4, F2. Laplacian score (with
k ≥ 15) sorts these four features as F3, F4, F1, F2. Laplacian score (with3 ≤ k < 15)
sorts these four features as F4, F3, F1, F2. With a largerk, we see more global structure
of the data set. Therefore, the feature F3 is ranked above F4 since the variance of F3 is
greater than that of F4. By using Fisher score, the four features are sorted as F3, F4, F1,
F2. This indicates that Laplacian score (unsupervised) achieved the same result as Fisher
score (supervised).

4.2 Face Clustering on PIE

In this section, we apply our feature selection algorithm to face clustering. By using Lapla-
cian score, we select a subset of features which are the most useful for discrimination.
Clustering is then performed in such a subspace.

4.2.1 Data Preparation

The CMU PIE face database is used in this experiment. It contains 68 subjects with 41,368
face images as a whole. Preprocessing to locate the faces was applied. Original images
were normalized (in scale and orientation) such that the two eyes were aligned at the same
position. Then, the facial areas were cropped into the final images for matching. The size
of each cropped image is32 × 32 pixels, with 256 grey levels per pixel. Thus, each image
is represented by a 1024-dimensional vector. No further preprocessing is done. In this
experiment, we fixed the pose and expression. Thus, for each subject, we got 24 images
under different lighting conditions.

For each given numberk, k classes were randomly selected from the face database. This
process was repeated 20 times (except fork = 68) and the average performance was com-
puted. For each test (givenk classes), two algorithms, i.e. feature selection using variance
and Laplacian score are used to select the features. The K-means was then performed in the
selected feature subspace. Again, the K-means was repeated 10 times with different initial-
izations and the best result in terms of the objective function of K-means was recorded.

4.2.2 Evaluation Metrics

The clustering result is evaluated by comparing the obtained label of each data point with
that provided by the data corpus. Two metrics, the accuracy (AC) and the normalized
mutual information metric (MI) are used to measure the clustering performance [6]. Given
a data pointxi, let ri andsi be the obtained cluster label and the label provided by the data
corpus, respectively. TheAC is defined as follows:

AC =

∑n

i=1
δ(si,map(ri))

n
(6)

wheren is the total number of data points andδ(x, y) is the delta function that equals one
if x = y and equals zero otherwise, and map(ri) is the permutation mapping function that
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(a) 5 classes

0 200 400 600 800 1000

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

Number of features

Laplacian Score
Variance

 
0 200 400 600 800 1000

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

M
ut

ua
l I

nf
or

m
at

io
n

Number of features

Laplacian Score
Variance

 

(b) 10 classes
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(c) 30 classes
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(d) 68 classes

Figure 2: Clustering performance versus number of features

maps each cluster labelri to the equivalent label from the data corpus. The best mapping
can be found by using the Kuhn-Munkres algorithm [5].

Let C denote the set of clusters obtained from the ground truth andC ′ obtained from our
algorithm. Their mutual information metricMI(C,C ′) is defined as follows:

MI(C,C ′) =
∑

ci∈C,c′
j
∈C′

p(ci, c
′
j) · log2

p(ci, c
′
j)

p(ci) · p(c′j)
(7)

wherep(ci) andp(c′j) are the probabilities that a data point arbitrarily selected from the
corpus belongs to the clustersci andc′j , respectively, andp(ci, c

′
j) is the joint probability

that the arbitrarily selected data point belongs to the clustersci as well asc′j at the same
time. In our experiments, we use the normalized mutual informationMI as follows:

MI(C,C ′) =
MI(C,C ′)

max(H(C),H(C ′))
(8)

whereH(C) andH(C ′) are the entropies ofC andC ′, respectively. It is easy to check
thatMI(C,C ′) ranges from 0 to 1.MI = 1 if the two sets of clusters are identical, and
MI = 0 if the two sets are independent.

4.2.3 Results

We compared Laplacian score with data variance for clustering. Note that, we did not
compare with Fisher score because it is supervised and the label information is not available
in the clustering experiments. Several tests were performed with different numbers of
clusters (k=5, 10, 30, 68). In all the tests, the number of nearest neighbors in our algorithm
is taken to be 5. The experimental results are shown in Figures 2 and Table 1. As can
be seen, in all these cases, our algorithm performs much better than using variance for
feature selection. The clustering performance varies with the number of features. The best
performance is obtained at very low dimensionality (less than 200). This indicates that
feature selection is capable of enhancing clustering performance. In Figure 3, we show the
selected features in the image domain for each test (k=5, 10, 30, 68), using our algorithm,
data variance and Fisher score. The brightness of the pixels indicates their importance.
That is, the more bright the pixel is, the more important. As can be seen, Laplacian score
provides better approximation to Fisher score than data variance. Both Laplacian score



(a) Variance (b) Laplacian Score (c) Fisher Score

Figure 3: Selected features in the image domain,k = 5, 10, 30, 68. The brightness of the
pixels indicates their importance.

Table 1: Clustering performance comparisons (kis the number of clusters)

Accuracy
k Feature Number 20 50 100 200 300 500 1024
5 Laplacian Score 0.727 0.806 0.831 0.849 0.837 0.644 0.479

Variance 0.683 0.698 0.602 0.503 0.482 0.464 0.479
10 Laplacian Score 0.685 0.743 0.787 0.772 0.711 0.585 0.403

Variance 0.494 0.500 0.456 0.418 0.392 0.392 0.403
30 Laplacian Score 0.591 0.623 0.671 0.650 0.588 0.485 0.358

Variance 0.399 0.393 0.390 0.365 0.346 0.340 0.358
68 Laplacian Score 0.479 0.554 0.587 0.608 0.553 0.465 0.332

Variance 0.328 0.362 0.334 0.316 0.311 0.312 0.332

Mutual Information
k Feature Number 20 50 100 200 300 500 1024
5 Laplacian Score 0.807 0.866 0.861 0.862 0.85 0.652 0.484

Variance 0.662 0.697 0.609 0.526 0.495 0.482 0.484
10 Laplacian Score 0.811 0.849 0.865 0.842 0.796 0.705 0.538

Variance 0.609 0.632 0.6 0.563 0.538 0.529 0.538
30 Laplacian Score 0.807 0.826 0.849 0.831 0.803 0.735 0.624

Variance 0.646 0.649 0.649 0.624 0.611 0.608 0.624
68 Laplacian Score 0.778 0.83 0.833 0.843 0.814 0.76 0.662

Variance 0.639 0.686 0.661 0.651 0.642 0.643 0.662

and Fisher score have the brightest pixels in the area of two eyes, nose, mouth, and face
contour. This indicates that even though our algorithm is unsupervised, it can discover the
most discriminative features to some extent.

5 Conclusions

In this paper, we propose a new filter method for feature selection which is independent
to any learning tasks. It can be performed in either supervised or unsupervised fashion.
The new algorithm is based on the observation that local geometric structure is crucial
for discrimination. Experiments on Iris data set and PIE face data set demonstrate the
effectiveness of our algorithm.
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