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Abstract

Many works have shown that strong connections relate learning from ex-
amples to regularization techniques for ill-posed inverse problems. Nev-
ertheless by now there was no formal evidence neither that learning from
examples could be seen as an inverse problem nor that theoretical results
in learning theory could be independently derived using tools from reg-
ularization theory. In this paper we provide a positive answer to both
questions. Indeed, considering the square loss, we translate the learning
problem in the language of regularization theory and show that consis-
tency results and optimal regularization parameter choice can be derived
by the discretization of the corresponding inverse problem.

1 Introduction

The main goal of learning from examples is to infer an estimator, given a finite sample
of data drawn according to a fixed but unknown probabilistic input-output relation. The
desired property of the selected estimator is to perform well on new data, i.e. it should gen-
eralize. The fundamental works of Vapnik and further developments [16], [8], [5], show
that the key to obtain a meaningful solution to the above problem is to control the complex-
ity of the solution space. Interestingly, as noted by [12], [8], [2], this is the idea underlying
regularization techniques for ill-posed inverse problems [15], [7]. In such a context to
avoid undesired oscillating behavior of the solution we have to restrict the solution space.



Not surprisingly the form of the algorithms proposed in both theories is strikingly similar.
Anyway a careful analysis shows that a rigorous connection between learning and regular-
ization for inverse problem is not straightforward. In this paper we consider the square loss
and show that the problem of learning can be translated into a convenient inverse problem
and consistency results can be derived in a general setting. When a generic loss is consid-
ered the analysis becomes immediately more complicated.
Some previous works on this subject considered the special case in which the elements of
the input space are fixed and not probabilistically drawn [11], [9]. Some weaker results
in the same spirit of those presented in this paper can be found in [13] where anyway the
connections with inverse problems is not discussed. Finally, our analysis is close to the
idea of stochastic inverse problems discussed in [16]. It follows the plan of the paper. Af-
ter recalling the main concepts and notation of learning and inverse problems, in section
4 we develop a formal connection between the two theories. In section 5 the main results
are stated and discussed. Finally in section 6 we conclude with some remarks and open
problems.

2 Learning from examples

We briefly recall some basic concepts of learning theory [16], [8]. In the framework of
learning, there are two sets of variables: the input space X , compact subset of Rn, and
the output space Y , compact subset of R. The relation between the input x ∈ X and the
output y ∈ Y is described by a probability distribution ρ(x, y) = ν(x)ρ(y|x) on X × Y .
The distribution ρ is known only through a sample z = (x,y) = ((x1, y1), . . . , (x`, y`)),
called training set, drawn i.i.d. according to ρ. The goal of learning is, given the sample
z, to find a function fz : X → R such that fz(x) is an estimate of the output y when the
new input x is given. The function fz is called estimator and the rule that, given a sample
z, provides us with fz is called learning algorithm.

Given a measurable function f : X → R, the ability of f to describe the distribution ρ is
measured by its expected risk defined as

I[f ] =

∫

X×Y

(f(x) − y)2 dρ(x, y).

The regression function

g(x) =

∫

Y

y dρ(y|x),

is the minimizer of the expected risk over the set of all measurable functions and always
exists since Y is compact. Usually, the regression function cannot be reconstructed exactly
since we are given only a finite, possibly small, set of examples z.
To overcome this problem, in the regularized least squares algorithm an hypothesis space
H is fixed, and, given λ > 0, an estimator fz

λ is defined as the solution of the regularized
least squares problem,

min
f∈H

{1

`

∑̀

i=1

(f(xi) − yi)
2 + λ ‖f‖2

H}. (1)

The regularization parameter λ has to be chosen depending on the available data, λ =
λ(`, z), in such a way that, for every ε > 0

lim
`→+∞

P

[

I[fz

λ(`,z)] − inf
f∈H

I[f ] ≥ ε

]

= 0. (2)

We note that in general inff∈H I[f ] is larger that I[g] and represents a sort of irreducible
error associated with the choice of the space H. The above convergence in probability is
usually called consistency of the algorithm [16] [14].



3 Ill-Posed Inverse Problems and Regularization

In this section we give a very brief account of linear inverse problems and regularization
theory [15], [7]. Let H and K be two Hilbert spaces and A : H → K a linear bounded
operator. Consider the equation

Af = gδ (3)

where gδ, g ∈ K and ‖g − gδ‖K ≤ δ. Here g represents the exact, unknown data and gδ the
available, noisy data. Finding the function f satisfying the above equation, given A and gδ ,
is the linear inverse problem associated to Eq. (3). The above problem is, in general, ill-
posed, that is, the Uniqueness can be restored introducing the Moore-Penrose generalized
inverse f † = A†g defined as the minimum norm solution of the problem

min
f∈H

‖Af − g‖2
K . (4)

However the operator A† is usually not bounded so, in order to ensure a continuous de-
pendence of the solution on the data, the following Tikhonov regularization scheme can be
considered1

min
f∈H

{‖Af − gδ‖2
K + λ ‖f‖2

H}, (5)

whose unique minimizer is given by

fλ
δ = (A∗A + λI)−1A∗gδ, (6)

where A∗ denotes the adjoint of A.

A crucial step in the above algorithm is the choice of the regularization parameter λ =
λ(δ, gδ), as a function of the noise level δ and the data gδ , in such a way that

lim
δ→0

∥
∥
∥f

λ(δ,gδ)
δ − f†

∥
∥
∥
H

= 0, (7)

that is, the regularized solution f
λ(δ,gδ)
δ converges to the generalized solution f † = A†g

(f† exists if and only if Pg ∈ Range(A), where P is the projection on the closure of the
range of A and, in that case, Af † = Pg) when the noise δ goes to zero.

The similarity between regularized least squares algorithm (1) and Tikhonov regulariza-
tion (5) is apparent. However, several difficulties emerge. First, to treat the problem of
learning in the setting of ill-posed inverse problems we have to define a direct problem by
means of a suitable operator A. Second, in the context of learning, it is not clear the nature
of the noise δ. Finally we have to clarify the relation between consistency (2) and the kind
of convergence expressed by (7). In the following sections we will show a possible way to
tackle these problems.

4 Learning as an Inverse Problem

We can now show how the problem of learning can be rephrased in a framework close to
the one presented in the previous section.
We assume that hypothesis space H is a reproducing kernel Hilbert space [1] with a contin-
uous kernel K : X ×X → R. If x ∈ X , we let Kx(s) = K(s, x), and, if ν is the marginal
distribution of ρ on X , we define the bounded linear operator A : H → L2(X, ν) as

(Af)(x) = 〈f,Kx〉H = f(x),

1In the framework of inverse problems, many other regularization procedures are introduced [7].
For simplicity we only treat the Tikhonov regularization.



that is, A is the canonical injection of H in L2(X, ν). In particular, for all f ∈ H, the
expected risk becomes,

I[f ] = ‖Af − g‖2
L2(X,ν) + I[g],

where g is the regression function [2]. The above equation clarifies that if the expected
risk admits a minimizer fH on the hypothesis space H, then it is exactly the generalized
solution2 f† = A†g of the problem

Af = g. (8)
Moreover, given a training set z = (x,y), we get a discretized version Ax : H → E` of A,
that is

(Axf)i = 〈f,Kxi
〉H = f(xi),

where E` = R` is the finite dimensional euclidean space endowed with the scalar product

〈y,y′〉
E` =

1

`

∑̀

i=1

yiy
′
i.

It is straightforward to check that

1

`

∑̀

i=1

(f(xi) − yi)
2 = ‖Axf − y‖2

E` ,

so that the estimator fz

λ given by the regularized least squares algorithm is the regularized
solution of the discrete problem

Axf = y. (9)
At this point it is useful to remark the following two facts. First, in learning from examples
we are not interested into finding an approximation of the generalized solution of the dis-
cretized problem (9), but we want to find a stable approximation of the solution of the exact
problem (8) (compare with [9]). Second, we notice that in learning theory the consistency
property (2) involves the control of the quantity

I[fz

λ] − inf
f∈H

I[f ] = ‖Af − g‖2
L2(X,ν) − inf

f∈H
‖Af − g‖2

L2(X,ν) . (10)

If P is the projection on the closure of the range of A, the definition of P gives

I[fz

λ] − inf
f∈H

I[f ] =
∥
∥
∥Afz

λ − Pg
∥
∥
∥

2

L2(X,ν)
(11)

(the above equality stronlgy depends on the fact that the loss function is the square loss). In
the inverse problem setting, the square root of the above quantity is called the residue of the
solution fz

λ. Hence, consistency is controlled by the residue of the estimator, instead of

the reconstruction error
∥
∥
∥fz

λ − f†
∥
∥
∥
H

(as in inverse problems). In particular, consistency

is a weaker condition than the one required by (7) and does not require the existence of the
generalized solution fH.

5 Regularization, Stochastic Noise and Consistency

To apply the framework of ill-posed inverse problems of Section 3 to the formulation of
learning proposed above, we note that the operator Ax in the discretized problem (9) differs
from the operator A in the exact problem (8) and a measure of the difference between Ax

and A is required. Moreover, the noisy data y ∈ E` and the exact data g ∈ L2(X, ν)
belong to different spaces, so that the notion of noise has to be modified. Given the above
premise our derivation of consistency results is developed in two steps: we first study the
residue of the solution by means of a measure of the noise due to discretization and then we
show a possible way to give a probabilistic evaluation of the noise previously introduced.

2The fact that fH is the minimal norm solution of (4) is ensured by the assumption that the support
of the measure ν is X , since in this case the operator A is injective.



5.1 Bounding the Residue of the Regularized Solution

We recall that the regularized solutions of problems (9) and (8) are given by

fλ
z

= (A∗
x
Ax + λI)−1A∗

x
y,

fλ = (A∗A + λI)−1A∗g.

The above equations show that fλ
z

and fλ depend only on A∗
x
Ax and A∗A which are

operators from H into H and on A∗
x
y and A∗g which are elements of H, so that the space

E` disappears. This observation suggests that noise levels could be ‖A∗
x
Ax − A∗A‖L(H)

and ‖A∗
x
y − A∗g‖H, where ‖·‖L(H) is the uniform operator norm. To this purpose, for

every δ = (δ1, δ2) ∈ R2
+ we define the collection of training sets.

Uδ = {z ∈ (X × Y )`| ‖A∗
x
y − A∗g‖H ≤ δ1, ‖A∗

x
Ax − A∗A‖L(H) ≤ δ2, ` ∈ N}

and we let M = sup{|y| | y ∈ Y }. The next theorem is the central result of the paper.

Theorem 1 If λ > 0, the following inequalities hold

1. for any training set z ∈ Uδ

∣
∣
∣

∥
∥Afλ

z
− Pg

∥
∥

L2(X,ν)
−

∥
∥Afλ − Pg

∥
∥

L2(X,ν)

∣
∣
∣ ≤ Mδ2

4λ
+

δ1

2
√

λ

2. if Pg ∈ Range(A), for any training set z ∈ Uδ ,
∣
∣
∥
∥fλ

z
− f†

∥
∥
H
−

∥
∥fλ − f†

∥
∥
H

∣
∣ ≤ Mδ2

2λ
3

2

+
δ1

λ

Moreover if we choose λ = λ(δ, z) in such a way that






limδ→0 sup
z∈Uδ

λ(δ, z) = 0

limδ→0 sup
z∈Uδ

δ1
2

λ(δ,z) = 0

limδ→0 sup
z∈Uδ

δ2

λ(δ,z) = 0

(12)

then
lim
δ→0

sup
z∈Uδ

∥
∥
∥Afλ(δ,z)

z
− Pg

∥
∥
∥

L2(X,ν)
= 0. (13)

We omit the complete proof and refer to [3]. Briefly, the idea is to note that
∣
∣
∣

∥
∥Afλ

z
− Pg

∥
∥

L2(X,ν)
−

∥
∥Afλ − Pg

∥
∥

L2(X,ν)

∣
∣
∣

≤
∥
∥Afλ

z
− Afλ

∥
∥

L2(X,ν)
=

∥
∥
∥(A∗A)

1

2 (fλ
z
− fλ)

∥
∥
∥
H

where the last equation follows by polar decomposition of the operator A. Moreover a
simple algebraic computation gives

fλ
z
−fλ = (A∗A+λI)−1(A∗A−A∗

x
Ax)(A∗

x
Ax+λI)−1A∗

x
y+(A∗A+λI)−1(A∗

x
y−A∗g)

where the relevant quantities for definition of the noise appear.
The first item in the above proposition quantifies the difference between the residues of
the regularized solutions of the exact and discretized problems in terms of the noise level
δ = (δ1, δ2). As mentioned before this is exactly the kind of result needed to derive
consistency. On the other hand the last part of the proposition gives sufficient conditions
on the parameter λ to ensure convergence of the residue to zero as the level noise decreases.
The above results were obtained introducing the collection Uδ of training sets compatible
with a certain noise level δ. It is left to quantify the noise level corresponding to a training
set of cardinality `. This will be achieved in a probabilistic setting in the next section.



5.2 Stochastic Evaluation of the Noise

In this section we estimate the discretization noise δ = (δ1, δ2).

Theorem 2 Let ε1, ε2 > 0 and κ = supx∈X

√

K(x, x), then

P

[

‖A∗g − Ax
∗y‖H ≤ Mκ√

`
+ ε1, ‖A∗A − Ax

∗Ax‖L(H) ≤
κ2

√
`

+ ε2

]

≥ 1 − e−
ε
2

1
`

2κ2M2 − e−
ε
2

2
`

2κ4 (14)

The proof is given in [3] and it is based on McDiarmid inequality [10] applied to the random
variables

F (z) = ‖Ax
∗y − A∗g‖H G(z) = ‖Ax

∗Ax − A∗A‖L(H).

Other estimates of the noise δ can be given using, for example, union bounds and Hoeffd-
ing’s inequality. Anyway rather then providing a tight analysis our concern was to find an
natural, explicit and easy to prove estimate of δ.

5.3 Consistency and Regularization Parameter Choice

Combining Theorems 1 and 2, we easily derive the following corollary.

Corollary 1 Given 0 < η < 1, with probability greater that 1 − η,
∣
∣
∣
∣

∥
∥
∥Afz

λ − Pg
∥
∥
∥

L2(X,ν)
−

∥
∥Afλ − Pg

∥
∥

L2(X,ν)

∣
∣
∣
∣

≤ κM

2
√

`

(
1√
λ

+
κ

2λ

) (

1 + log

√
4

η

)

(15)

for all λ > 0.

Recalling (10) and (11) it is straightforward to check that the above inequality can be easily
restated in the usual learning notation, in fact we obtain

I[fz

λ] ≤








κL

2
√

`

(
1√
λ

+
κ

2λ

) (

1 + log

√
4

η

)

︸ ︷︷ ︸

sample error

+
∥
∥Afλ − Pg

∥
∥

L2(X,ν)
︸ ︷︷ ︸

approximation error








2

+ inf
f∈H

I[f ]

︸ ︷︷ ︸

irreducible error

.

In the above inequality the first term plays the role of sample error. If we choose the
regularization parameter so that λ = λ(`, z) = O( 1

`b ), with 0 < b < 1
2 the sample error

converges in probability to zero with order O
(√

1
`1−2b

)

when ` → ∞. On the other

hand the second term represents the approximation error and it is possible to show, using
standard results from spectral theory, that it vanishes as λ goes to zero [7]. Finally, the last
term represents the minimum attainable risk once the hypothesis space H has been chosen.

From the above observations it is clear that consistency is ensured once the parameter λ is
chosen according to the aforementioned conditions. Nonetheless to provide convergence
rates it is necessary to control the convergence rate of the approximation error. Unfortu-
nately it is well known that this can be accomplished only making some assumptions on
the underlying probability distribution ρ (see for example [2]). It can be shown that if the
explicit dependence of the approximation error on λ is not available we cannot determine



an optimal a priori (data independent) dependency λ = λ(`) for the regularization param-
eter. Nevertheless a posteriori (data dependent) choices λ = λ(`, z) can be considered to
automatically achieve optimal convergence rate [5], [6]. With respect to this last fact we
notice that the set of samples such that inequality (14) holds depends on ` and η, but does
not depend λ, so that we can consider without any further effort a posteriori parameter
choices (compare with [4], [5]).

Finally, we notice that the estimate (15) is the result of two different procedures: Theo-
rem 1, which is of functional type, gives the dependence of the bound by the regularization
parameter λ and by the noise levels ‖A∗

x
Ax − A∗A‖L(H) and ‖A∗

x
y − A∗g‖H, whereas

Theorem 2, which is of probabilistic nature, relates the noise levels to the number of data `
and the confidence level η.

6 Conclusions

In this paper we defined a direct and inverse problem suitable for the learning problem and
derived consistency results for the regularized least squares algorithm. Though our analysis
formally explains the connections between learning theory and linear inverse problems, its
main limit is that we considered only the square loss. We briefly sketch how the arguments
presented in the paper extend to general loss functions. For sake of simplicity we consider
a differentiable loss function V . It is easy to see that the minimizer fH of the expected risk
satisfies the following equation

SfH = 0 (16)

where S = LK ◦ O and LK is the integral operator with kernel K, that is

(LKf)(x) =

∫

X

K(x, s)f(s)dν(s)

and O is the operator defined by

(Of)(x) =

∫

Y

V ′(y, f(x))dρ(y|x).

If we consider a generic differentiable loss the operator O and hence S is non linear, and
estimating fH is an ill-posed non linear inverse problem. It is well known that the theory
for this kind of problems is much less developed than the corresponding theory for linear
problems. Moreover, since, in general, I[f ] does not define a metric, it is not so clear the
relation between the expected risk and the residue. It appears evident that the attempt to
extend our results to a wider class of loss function is not straightforward. A possible way to
tackle the problem, further developing our analysis, might pass through the exploitation of
a natural convexity assumption on the loss function. Future work also aims to derive tighter
probabilistic bounds on the noise using recently proposed data dependent techniques.
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