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Abstract 

We propose a framework to incorporate unlabeled data in kernel 
classifier, based on the idea that two points in the same cluster are 
more likely to have the same label. This is achieved by modifying 
the eigenspectrum of the kernel matrix. Experimental results assess 
the validity of this approach. 

1 Introduction 

We consider the problem of semi-supervised learning, where one has usually few 
labeled examples and a lot of unlabeled examples. One of the first semi-supervised 
algorithms [1] was applied to web page classification. This is a typical example 
where the number of unlabeled examples can be made as large as possible since 
there are billions of web page, but labeling is expensive since it requires human 
intervention. Since then, there has been a lot of interest for this paradigm in the 
machine learning community; an extensive review of existing techniques can be 
found in [10]. 

It has been shown experimentally that under certain conditions, the decision func­
tion can be estimated more accurately, yielding lower generalization error [1, 4, 6] . 
However, in a discriminative framework, it is not obvious to determine how unla­
beled data or even the perfect knowledge of the input distribution P(x) can help in 
the estimation of the decision function. Without any assumption, it turns out that 
this information is actually useless [10]. 

Thus, to make use of unlabeled data, one needs to formulate assumptions. One 
which is made, explicitly or implicitly, by most of the semi-supervised learning 
algorithms is the so-called "cluster assumption" saying that two points are likely to 
have the same class label if there is a path connecting them passing through regions 
of high density only. Another way of stating this assumption is to say that the 
decision boundary should lie in regions of low density. In real world problems, this 
makes sense: let us consider handwritten digit recognition and suppose one tries to 
classify digits 0 from 1. The probability of having a digit which in between a 0 and 
1 is very low. 

In this article, we will show how to design kernels which implement the cluster 
assumption, i.e. kernels such that the induced distance is small for points in the 
same cluster and larger for points in different clusters. 
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Figure 1: Decision function obtained by an SVM with the kernel (1). On this 
toy problem, this kernel implements perfectly the cluster assumption: the decision 
function cuts a cluster only when necessary. 

2 Kernels implementing the cluster assumption 

In this section, we explore different ideas on how to build kernels which take into 
account the fact that the data is clustered. In section 3, we will propose a framework 
which unifies the methods proposed in [11] and [5]. 

2.1 Kernels from mixture models 

It is possible to design directly a kernel taking into account the generative model 
learned from the unlabeled data. Seeger [9] derived such a kernel in a Bayesian 
setting. He proposes to use the unlabeled data to learn a mixture of models and 
he introduces the Mutual Information kernel which is defined in such way that 
two points belonging to different components of the mixture model will have a 
low dot product. Thus, in the case of a mixture of Gaussians, this kernel is an 
implementation of the cluster assumption. Note that in the case of a single mixture 
model, the Fisher kernel [3] is an approximation of this Mutual Information kernel. 

Independently, another extension of the Fisher kernel has been proposed in [12] 
which leads, in the case of a mixture of Gaussians (J.Lk, ~k) to the Marginalized 
kernel whose behavior is similar to the mutual information kernel, 

q 

K(x, y) = L P(klx)P(kly)x T~kly. (1) 
k=l 

To understand the behavior of the Marginalized kernel, we designed a 2D-toy prob­
lem (figure 1): 200 unlabeled points have been sampled from a mixture of two 
Gaussians, whose parameters have then been learned with EM applied to these 
points. An SVM has been trained on 3 labeled points using the Marginalized kernel 
(1). The behavior of this decision function is intuitively very satisfying: on the 
one hand, when not enough label data is available, it takes into account the cluster 
assumption and does not cut clusters (right cluster), but on the other hand, the 
kernel is flexible enough to cope with different labels in the same cluster (left side). 

2.2 Random walk kernel 

The kernels presented in the previous section have the drawback of depending on 
a generative model: first, they require an unsupervised learning step, but more 



importantly, in a lot of real world problems, they cannot model the input distri­
bution with sufficient accuracy. When applying the mixture of Gaussians method 
(presented above) to real world problems, one cannot expect the "ideal" result of 
figure 1. 

For this reason, in clustering and semi-supervised learning, there has been a lot 
of interest to find algorithms which do not depend on a generative model. We 
will present two of them, find out how they are related and present a kernel which 
extends them. The first one is the random walk representation proposed in [11] . 
The main idea is to compute the RBF kernel matrix (with the labeled and unlabeled 
points) Kij = exp( -llxi - Xj 112 /2(2 ) and to interpret it as a transition matrix of 
a random walk on a graph with vertices Xi , P(Xi -+ Xj) = "K'k . . After t steps 

L.J p tp 

(where t is a parameter to be determined) , the probability of going from a point 
Xi to a point Xj should be quite high if both points belong to the same cluster and 
should stay low if they are in two different clusters. 

Let D be the diagonal matrix whose elements are Dii = Lj K ij . The one step 
transition matrix is D - 1 K and after t steps it is pt = (D - 1 K)t. In [11], the 
authors design a classifier which uses directly those transition probabilities. One 
would be tempted to use pt as a kernel matrix for a SVM classifier. However, it 
is not possible to directly use pt as a kernel matrix since it is not even symmetric. 
We will see in section 3 how a modified version of pt can be used as a kernel. 

2.3 Kernel induced by a clustered representation 

Another idea to implement the cluster assumption is to change the representation 
of the input points such that points in the same cluster are grouped together in the 
new representation. For this purpose, one can use tools of spectral clustering (see 
[13] for a review) Using the first eigenvectors of a similarity matrix, a representation 
where the points are naturally well clustered has been recently presented in [5]. We 
suggest to train a discriminative learning algorithm in this representation. This 
algorithm, which resembles kernel PCA, is the following: 

1. Compute the affinity matrix, which is an RBF kernel matrix but with 
diagonal elements being 0 instead of 1. 

2. Let D be a diagonal matrix with diagonal elements equal to the sum of the 
rows (or the columns) of K and construct the matrix L = D - 1/ 2KD - 1/ 2 . 

3. Find the eigenvectors (Vi, ... , Vk) of L corresponding the first k eigenvalues. 

4. The new representation of the point Xi is (Vii' ... ' Vik) and is normalized 
to have length one: ip(Xi)p = Vip / 0:=;=1 Vfj)1/2. 

The reason to consider the first eigenvectors of the affinity matrix is the following. 
Suppose there are k clusters in the dataset infinitely far apart from each other. One 
can show that in this case, the first k eigenvalues of the affinity matrix will be 1 and 
the eigenvalue k + 1 will be strictly less than 1 [5]. The value of this gap depends 
on how well connected each cluster is: the better connected, the larger the gap is 
(the smaller the k + 1st eigenvalue). Also, in the new representation in Rk there 
will be k vectors Zl, .. . ,Zk orthonormal to each other such that each training point 
is mapped to one of those k points depending on the cluster it belongs to. 

This simple example show that in this new representation points are naturally 
clustered and we suggest to train a linear classifier on the mapped points. 



3 Extension of the cluster kernel 

Based on the ideas of the previous section, we propose the following algorithm: 

1. As before, compute the RBF matrix K from both labeled and unlabeled 
points (this time with 1 on the diagonal and not 0) and D, the diagonal 
matrix whose elements are the sum of the rows of K. 

2. Compute L = D- 1/ 2 K D- 1/ 2 and its eigendecomposition L = U AUT. 

3. Given a transfer function <p, let :Xi = <p(Ai), where the Ai are the eigenvalues 
of L, and construct L = U AuT. 

4. Let iJ be a diagonal matrix with iJii = 1/ Lii and compute K = iJ1 /2 LiJ1/2. 

The new kernel matrix is K. Different transfer function lead to different kernels: 

Linear <p(A) = A. In this case L = L and iJ = D (since the diagonal elements of 
K are 1). It turns out that K = K and no transformation is performed. 

Step <p(A) = 1 if A 2: Acut and 0 otherwise. If Acut is chosen to be equal to the k-th 
largest eigenvalue of L, then the new kernel matrix K is the dot product 
matrix in the representation of [5] described in the previous section. 

Linear-step Same as the step function, but with <p(A) = A for A 2: Acut . This is 
closely related to the approach consisting in building a linear classifier in 
the space given by the first Kernel PCA components [8]: if the normaliza­
tion matrix D and iJ were equal to the identity, both approaches would be 
identical. Indeed, if the eigendecomposition of K is K = U AUT , the coor­
dinates of the training points in the kernel PCA representation are given 
by the matrix U A 1/2 . 

Polynomial <p(A) At. In this case, L Lt and K 
iJ1 /2 D1 /2 (D- 1 K)t D-1/2 iJ1/2 . The matrix D- 1 K is the transition 
matrix in the random walk described in section 2.2 and K can be inter­
preted as a normalized and symmetrized version of the transition matrix 
corresponding to a t step random walk. 

This makes the connection between the idea of the random walk kernel of section 
2.2 and a linear classifier trained in a space induced by either the spectral clustering 
algorithm of [5] or the Kernel PCA algorithm. 

How to handle test points If test points are available during training and if 
they are also drawn from the same distribution as the training points (an assumption 
which is commonly made), then they should be considered as unlabeled points and 
the matrix K described above should be built using training, unlabeled and test 
points. 

However, it might happen that test points are not available during training. This is 
a problem, since our method produces a new kernel matrix, but not an analytic form 
of the effective new kernel that could readily be evaluated on novel test points. In 
this case, we propose the following solution: approximate a test point x as a linear 
combination of the training and unlabeled points, and use this approximation to 
express the required dot product between the test point and other points in the 
feature space. More precisely, let 

aD = argm~n 11<p(X) - n~u lli<P(Xi)II = K-1v 
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Figure 2: Test error on a text classification problem for training set size varying 
from 2 to 128 examples. The different kernels correspond to different kind of transfer 
functions. 

with Vi = K(x, Xi)l . Here, <I> is the feature map corresponding to K, i.e., K(x, x') = 
(<I>(x) . <I>(x/)). The new dot product between the test point x and the other points 
is expressed as a linear combination of the dot products of k, 

- - - 0 - - 1 
K(X,Xi) = (Ka )i = (KK vk 

Note that for a linear transfer function, k = K, and the new dot product is the 
standard one. 

4 Experiments 

4.1 Influence of the transfer function 

We applied the different kernel clusters of section 3 to the text classification task of 
[11], following the same experimental protocol. There are two categories mac and 
windows with respectively 958 and 961 examples of dimension 7511. The width of 
the RBF kernel was chosen as in [11] giving a = 0.55. Out of all examples, 987 
were taken away to form the test set. Out of the remaining points , 2 to 128 were 
randomly selected to be labeled and the other points remained unlabeled. Results 
are presented in figure 2 and averaged over 100 random selections of the labeled 
examples. The following transfer functions were compared: linear (i.e. standard 
SVM), polynomial <p(A) = A5 , step keeping only the n + 10 where n is the number of 
labeled points , and poly-step defined in the following way (with 1 2 Ai 2 A2 2 . .. ), 

i :S n + 10 
i > n + 10 

For large sizes of the (labeled) training set, all approaches give similar results. The 
interesting case are small training sets. Here, the step and poly-step functions work 
very well. The polynomial transfer function does not give good results for very small 
training sets (but nevertheless outperforms the standard SVM for medium sizes). 
This might be due to the fact that in this example, the second largest eigenvalue is 
0.073 (the largest is by construction 1). Since the polynomial transfer function tends 

1 We consider here an RBF kernel and for this reason the matrix K is always invertible. 



to push to 0 the small eigenvalues, it turns out that the new kernel has "rank almost 
one" and it is more difficult to learn with such a kernel. To avoid this problem, 
the authors of [11] consider a sparse affinity matrix with non-zeros entries only for 
neighbor examples. In this way the data are by construction more clustered and 
the eigenvalues are larger. We verified experimentally that the polynomial transfer 
function gave better results when applied to a sparse affinity matrix. 

Concerning the step transfer function, the value of the cut-off index corresponds 
to the number of dimensions in the feature space induced by the kernel, since the 
latter is linear in the representation given by the eigendecomposition of the affinity 
matrix. Intuitively, it makes sense to have the number of dimensions increase with 
the number of training examples, that is the reason why we chose a cutoff index 
equal to n + 10. 

The poly-step transfer function is somewhat similar to the step function, but is not as 
rough: the square root tends to put more importance on dimensions corresponding 
to large eigenvalues (recall that they are smaller than 1) and the square function 
tends to discard components with small eigenvalues. This method achieves the best 
results. 

4.2 Automatic selection of the transfer function 

The choice of the poly-step transfer function in the previous choice corresponds to 
the intuition that more emphasis should be put on the dimensions corresponding to 
the largest eigenvalues (they are useful for cluster discrimination) and less on the 
dimensions with small eigenvalues (corresponding to intra-cluster directions). The 
general form of this transfer function is 

i �~� r 
i > r ' 

(2) 

where p, q E lR and r E N are 3 hyperparameters. As before, it is possible to choose 
qualitatively some values for these parameters, but ideally, one would like a method 
which automatically chooses good values. It is possible to do so by gradient descent 
on an estimate of the generalization error [2]. To assess the possibility of estimating 
accurately the test error associated with the poly-step kernel, we computed the span 
estimate [2] in the same setting as in the previous section. We fixed p = q = 2 and 
the number of training points to 16 (8 per class). The span estimate and the test 
error are plotted on the left side of figure 3. 

Another possibility would be to explore methods that take into account the spec­
trum of the kernel matrix in order to predict the test error [7]. 

4.3 Comparison with other algorithms 

We summarized the test errors (averaged over 100 trials) of different algorithms 
trained on 16 labeled examples in the following table. 

The transductive SVM algorithm consists in maximizing the margin on both labeled 
and unlabeled. To some extent it implements also the cluster assumption since it 
tends to put the decision function in low density regions. This algorithm has been 
successfully applied to text categorization [4] and is a state-of-the-art algorithm for 






