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Abstract

An important issue in applying SVMs to speech recognition is the
ability to classify variable length sequences. This paper presents
extensions to a standard scheme for handling this variable length
data, the Fisher score. A more useful mapping is introduced based
on the likelihood-ratio. The score-space defined by this mapping
avoids some limitations of the Fisher score. Class-conditional gen-
erative models are directly incorporated into the definition of the
score-space. The mapping, and appropriate normalisation schemes,
are evaluated on a speaker-independent isolated letter task where
the new mapping outperforms both the Fisher score and HMMs
trained to maximise likelihood.

1 Imntroduction

Speech recognition is a complex, dynamic classification task. State-of-the-art sys-
tems use Hidden Markov Models (HMMs), either trained to maximise likelihood or
discriminatively, to achieve good levels of performance. One of the reasons for the
popularity of HMMs is that they readily handle the variable length data sequences
which result from variations in word sequence, speaker rate and accent. Support
Vector Machines (SVMs) [1] are a powerful, discriminatively-trained technique that
have been shown to work well on a variety of tasks. However they are typically only
applied to static binary classification tasks. This paper examines the application
of SVMs to speech recognition. There are two major problems to address. First,
how to handle the variable length sequences. Second, how to handle multi-class
decisions. This paper only concentrates on dealing with variable length sequences.
It develops our earlier research in [2] and is detailed more fully in [7]. A similar
approach for protein classification is adopted in [3].

There have been a variety of methods proposed to map variable length sequences
to vectors of fixed dimension. These include vector averaging and selecting a ‘rep-
resentative’ number of observations from each utterance. However, these methods
may discard useful information. This paper adopts an approach similar to that of
[4] which makes use of all the available data. Their scheme uses generative prob-
ability models of the data to define a mapping into a fixed dimension space, the
Fisher score-space. When incorporated within an SVM kernel, the kernel is known
as the Fisher kernel. Relevant regularisation issues are discussed in [5]. This paper



examines the suitability of the Fisher kernel for classification in speech recognition
and proposes an alternative, more useful, kernel. In addition some normalisation
issues associated with using this kernel for speech recognition are addressed.

Initially a general framework for defining alternative score-spaces is required. First,
define an observation sequence as O = (01,...0,...0r) where o, € R”, and a set
of generative probability models of the observation sequences as P = {p;(0|6x)},
where 8}, is the vector of parameters for the kth member of the set. The observation
sequence O can be mapped into a vector of fixed dimension [4],

PL(0) = ¢/ ({p:(016:)}) (1)
f(-) is the score-argument and is a function of the members of the set of generative
models P. ¢ is the score-mapping and is defined using a score-operator F. npé,(O)
is the score and occupies the fixed-dimension score-space. OQur investigation of

score-spaces falls into three divisions. What are the best generative models, score-
arguments and score-operators to use?

2 Score-spaces

As HMMs have proved successful in speech recognition, they are a natural choice
as the generative models for this task. In particular HMMs with state output
distributions formed by Gaussian mixture models. There is also the choice of the
score-argument. For a two-class problem, let p;(0|8;) represent a generative model,
where i = {g, 1,2} (g denotes the global 2-class generative model, and 1 and 2 denote
the class-conditional generative models for the two competing classes). Previous
schemes have used the log of a single generative model, Inp;(0|8;) representing
either both classes as in the original Fisher score (i = g) [4], or one of the classes
(i = 1 or 2) [6]. This score-space is termed the likelihood score-space, p}i¥(O).
The score-space proposed in this paper uses the log of the ratio of the two class-
conditional generative models, In(p;(0|61)/p2(0|62)) where 8 = [8],0,]7. The
corresponding score-space is called the likelihood-ratio score-space, cpl;f,(O). Thus,
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The likelihood-ratio score-space can be shown to avoid some of the limitations of
the likelihood score-space, and may be viewed as a generalisation of the standard
generative model classifier. These issues will be discussed later.

Having proposed forms for the generative models and score-arguments, the score-
operators must be selected. The original score-operator in [4] was the 1st-order
derivative operator applied to HMMs with discrete output distributions. Consider
a continuous density HMM with N emitting states, j € {1...N}. Each state,
j, has an output distribution formed by a mixture of K Gaussian components,
N (#ji,Zj) where k € {1...K}. BEach component has parameters of weight w;,
mean ;. and covariance Yji. The Ist-order derivatives of the log probability of
the sequence O with respect to the model parameters are given below!, where the
derivative operator has been defined to give column vectors,

T
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'For fuller details of the derivations see [2].
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7vjk(t) is the posterior probability of component k of state j at time {. Assuming
the HMM is left-to-right with no skips and assuming that a state only appears once
in the HMM (i.e. there is no state-tying), then the lst-order derivative for the
self-transition probability for state j, a;;, is,
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The 1st-order derivatives for each Gaussian parameter and self-transition probabil-
ity in the HMM can be spliced together into a ‘super-vector’ which is the score?.

From the definitions above, the score for an utterance is a weighted sum of scores
for individual observations. If the scores for the same utterance spoken at different
speaking rates were calculated, they would lie in different regions of score-space
simply because of differing numbers of observations. To ease the task of the classifier
in score-space, the score-space may be normalised by the number of observations,
called sequence length normalisation. Duration information can be retained in the
derivatives of the transition probabilities. One method of normalisation redefines
score-spaces using generative models trained to maximise a modified log likelihood
function, [,,(0|0). Consider that state j has entry time 7; and duration d; (both in
numbers of observations) and output probability b;(o;) for observation o; [7]. So,
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It is not possible to maximise [, (0|8) using the EM algorithm. Hill-climbing tech-
niques could be used. However, in this paper, a simpler normalisation method is
employed. The generative models are trained to maximise the standard likelihood
function. Rather than define the score-space using standard state posteriors 7;(t)
(the posterior probability of state j at time ¢), it is defined on state posteriors nor-
malised by the total state occupancy over the utterance. The standard component
posteriors ;. (t) are replaced in Equations 4 to 6 and 8 by their normalised form
Yk (t),

(10)
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In effect, each derivative is divided by the sum of state posteriors. This is preferred
to division by the total number of observations T" which assumes that when the

utterance length varies, the occupation of every state in the state sequence is scaled
by the same ratio. This is not necessarily the case for speech.

The nature of the score-space affects the discriminative power of classifiers built
in the score-space. For example, the likelihood score-space defined on a two-class

’Due to the sum to unity constraints, one of the weight parameters in each Gaussian
mixture is discarded from the definition of the super-vector, as are the forward transitions
in the left-to-right HMM with no skips.



generative model is susceptible to wrap-around [7]. This occurs when two different
locations in acoustic-space map to a single point in score-subspace. As an example,
consider two classes modelled by two widely-spaced Gaussians. If an observation
is generated at the peak of the first Gaussian, then the derivative relative to the
mean of that Gaussian is zero because S, ;) is zero (see Equation 4). However, the
derivative relative to the mean of the distant second Gaussian is also zero because
of a zero component posterior 7, (¢). A similar problem occurs with an observation
generated at the peak of the second Gaussian. This ambiguity in mapping two
possible locations in acoustic-space to the zero of the score-subspace of the means
represents a wrapping of the acoustic space onto this subspace. This also occurs
in the subspace of the variances. Thus wrap-around can increase class confusion.
A likelihood-ratio score-space defined on these two Gaussians does not suffer wrap-
around since the component posteriors for each Gaussian are forced to unity.

So far, only 1lst-order derivative score-operators have been considered. It is pos-
sible to include the zeroth, 2nd and higher-order derivatives. Of course there is
an interaction between the score-operator and the score-argument. For example,
the zeroth-order derivative for the likelihood score-space is expected to be less use-
ful than its counter-part in the likelihood-ratio score-space because of its greater
sensitivity to acoustic conditions. A principled approach to using derivatives in
score-spaces would be useful. Consider the simple case of true class-conditional
generative models p; (0|6;) and p2(0|@2) with respective estimates of the same
functional form p;(0|6;) and p»(0|0). Expressing the true models as Taylor se-
ries expansions about the parameter estimates 8; and 8, (see [7] for more details,
and [3]),

Inpi(016;) = Inpi(018;) + (6; — 8:)" Vg Inpi(0|6)
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The output from the operator in square brackets is an infinite number of derivatives
arranged as a column vector. w; is also a column vector. The expressions for the
two true models can be incorporated into an optimal minimum Bayes error decision

rule as follows, where 8 = [é:,é;]T, w = [w],w, ], and b encodes the class
priors,
Inp;(0|6:) —Inp2(0[62) +b = 0
wI[1,vg ,vec(Vp V2 )T ...]  Inp: (0]6:)-
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¢'"(0) is a score in the likelihood-ratio score-space formed by an infinite number of

derivatives with respect to the parameter estimates 6. Therefore, the optimal deci-
sion rule can be recovered by constructing a well-trained linear classifier in ¢'*(O).
In this case, the standard SVM margin can be interpreted as the log posterior mar-
gin. This justifies the use of the likelihood-ratio score-space and encourages the
use of higher-order derivatives. However, most HMMSs used in speech recognition
are lst-order Markov processes but speech is a high-order or infinite-order Markov
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