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Abstract 

An important issue in applying SVMs to speech recognition is the 
ability to classify variable length sequences. This paper presents 
extensions to a standard scheme for handling this variable length 
data, the Fisher score. A more useful mapping is introduced based 
on the likelihood-ratio. The score-space defined by this mapping 
avoids some limitations of the Fisher score. Class-conditional gen­
erative models are directly incorporated into the definition of the 
score-space. The mapping, and appropriate normalisation schemes, 
are evaluated on a speaker-independent isolated letter task where 
the new mapping outperforms both the Fisher score and HMMs 
trained to maximise likelihood. 

1 Introduction 

Speech recognition is a complex, dynamic classification task. State-of-the-art sys­
tems use Hidden Markov Models (HMMs), either trained to maximise likelihood or 
discriminatively, to achieve good levels of performance. One of the reasons for the 
popularity of HMMs is that they readily handle the variable length data sequences 
which result from variations in word sequence, speaker rate and accent. Support 
Vector Machines (SVMs) [1] are a powerful, discriminatively-trained technique that 
have been shown to work well on a variety of tasks. However they are typically only 
applied to static binary classification tasks. This paper examines the application 
of SVMs to speech recognition. There are two major problems to address. First, 
how to handle the variable length sequences. Second, how to handle multi-class 
decisions. This paper only concentrates on dealing with variable length sequences. 
It develops our earlier research in [2] and is detailed more fully in [7]. A similar 
approach for protein classification is adopted in [3]. 

There have been a variety of methods proposed to map variable length sequences 
to vectors of fixed dimension. These include vector averaging and selecting a 'rep­
resentative ' number of observations from each utterance. However, these methods 
may discard useful information. This paper adopts an approach similar to that of 
[4] which makes use of all the available data. Their scheme uses generative prob­
ability models of the data to define a mapping into a fixed dimension space, the 
Fisher score-space. When incorporated within an SVM kernel, the kernel is known 
as the Fisher kernel. Relevant regularisation issues are discussed in [5]. This paper 



examines the suitability of the Fisher kernel for classification in speech recognition 
and proposes an alternative, more useful, kernel. In addition some normalisation 
issues associated with using this kernel for speech recognition are addressed. 

Initially a general framework for defining alternative score-spaces is required. First, 
define an observation sequence as 0 = (01 , . . . Ot, ... OT) where Ot E ~D , and a set 
of generative probability models of the observation sequences as P = {Pk(OI(h)}, 
where 9 k is the vector of parameters for the kth member of the set. The observation 
sequence 0 can be mapped into a vector of fixed dimension [4], 

i{J~ (0) (1) 

f(·) is the score-argument and is a function of the members of the set of generative 
models P. i{Jft is the score-mapping and is defined using a score-operator F. i{J~(0) 
is the score and occupies the fixed-dimension score-space. Our investigation of 
score-spaces falls into three divisions. What are the best generative models, score­
arguments and score-operators to use? 

2 Score-spaces 

As HMMs have proved successful in speech recognition, they are a natural choice 
as the generative models for this task. In particular HMMs with state output 
distributions formed by Gaussian mixture models. There is also the choice of the 
score-argument. For a two-class problem, let Pi(019i ) represent a generative model, 
where i = {g, 1, 2} (g denotes the global2-class generative model, and 1 and 2 denote 
the class-conditional generative models for the two competing classes). Previous 
schemes have used the log of a single generative model, Inpi (019i) representing 
either both classes as in the original Fisher score (i = g) [4], or one of the classes 
(i = 1 or 2) [6]. This score-space is termed the likelihood score-space, i{J~k(O). 
The score-space proposed in this paper uses the log of the ratio of the two class­
conditional generative models, In(P1(019d /P2(0192)) where 9 = [9{,9J]T. The 
corresponding score-space is called the likelihood-ratio score-space, i{J~(0) . Thus, 

i{J~k(O) 

i{J~(0) 

(2) 

(3) 

The likelihood-ratio score-space can be shown to avoid some of the limitations of 
the likelihood score-space, and may be viewed as a generalisation of the standard 
generative model classifier. These issues will be discussed later. 

Having proposed forms for the generative models and score-arguments, the score­
operators must be selected. The original score-operator in [4] was the 1st-order 
derivative operator applied to HMMs with discrete output distributions. Consider 
a continuous density HMM with N emitting states, j E {I . . . N}. Each state, 
j, has an output distribution formed by a mixture of K Gaussian components, 
N(J-tjk' ~jd where k E {I ... K}. Each component has parameters of weight Wjk, 
mean J-tjk and covariance ~jk. The 1st-order derivatives of the log probability of 
the sequence 0 with respect to the model parameters are given below1, where the 
derivative operator has been defined to give column vectors, 

T 

L ')'jk(t)S~,jkl (4) 
t = l 

lFor fuller details of the derivations see [2). 



V Wjk Inp(OIO) 

where S[t ,jk] 

Ijdt) is the posterior probability of component k of state j at time t. Assuming 
the HMM is left-to-right with no skips and assuming that a state only appears once 
in the HMM (i.e. there is no state-tying), then the 1st-order derivative for the 
self-transition probability for state j, ajj, is, 

t[/j(t) 1] 
t=l ajj Tajj(l- ajj) 

(8) 

The 1st-order derivatives for each Gaussian parameter and self-transition probabil­
ity in the HMM can be spliced together into a 'super-vector' which is the score2 . 

From the definitions above, the score for an utterance is a weighted sum of scores 
for individual observations. If the scores for the same utterance spoken at different 
speaking rates were calculated, they would lie in different regions of score-space 
simply because of differing numbers of observations. To ease the task of the classifier 
in score-space, the score-space may be normalised by the number of observations, 
called sequence length normalisation. Duration information can be retained in the 
derivatives of the transition probabilities. One method of normalisation redefines 
score-spaces using generative models trained to maximise a modified log likelihood 
function, In( 010). Consider that state j has entry time Tj and duration dj (both in 
numbers of observations) and output probability bj(Ot) for observation Ot [7]. So, 

N 1 T;+dj- 1 

In(OIO) L d- ((dj -1) lnajj + Inaj(j+1) + L (Inbj(Ot))) (9) 
j=l J t=Tj 

It is not possible to maximise In(OIO) using the EM algorithm. Hill-climbing tech­
niques could be used. However, in this paper, a simpler normalisation method is 
employed. The generative models are trained to maximise the standard likelihood 
function. Rather than define the score-space using standard state posteriors Ij(t) 
(the posterior probability of state j at time t), it is defined on state posteriors nor­
malised by the total state occupancy over the utterance. The standard component 
posteriors 1 j k (t) are replaced in Equations 4 to 6 and 8 by their normalised form 
'Yjk(t), 

A . (t) _ Ij(t) (WjkN(Ot; ILjk, ~jk) ) 
~k - T K 2::T=l/j(T) 2::i = l wjiN(ot; ILji' ~ji) 

(10) 

In effect, each derivative is divided by the sum of state posteriors. This is preferred 
to division by the total number of observations T which assumes that when the 
utterance length varies, the occupation of every state in the state sequence is scaled 
by the same ratio. This is not necessarily the case for speech. 

The nature of the score-space affects the discriminative power of classifiers built 
in the score-space. For example, the likelihood score-space defined on a two-class 

2Due to the sum to unity constraints, one of the weight parameters in each Gaussian 
mixture is discarded from the definition of the super-vector, as are the forward transitions 
in the left-to-right HMM with no skips. 



generative model is susceptible to wrap-around [7] . This occurs when two different 
locations in acoustic-space map to a single point in score-subspace. As an example, 
consider two classes modelled by two widely-spaced Gaussians. If an observation 
is generated at the peak of the first Gaussian, then the derivative relative to the 
mean of that Gaussian is zero because S [t ,jk] is zero (see Equation 4). However, the 
derivative relative to the mean of the distant second Gaussian is also zero because 
of a zero component posterior f jdt). A similar problem occurs with an observation 
generated at the peak of the second Gaussian. This ambiguity in mapping two 
possible locations in acoustic-space to the zero of the score-subspace of the means 
represents a wrapping of the acoustic space onto this subspace. This also occurs 
in the subspace of the variances. Thus wrap-around can increase class confusion. 
A likelihood-ratio score-space defined on these two Gaussians does not suffer wrap­
around since the component posteriors for each Gaussian are forced to unity. 

So far, only 1st-order derivative score-operators have been considered. It is pos­
sible to include the zeroth, 2nd and higher-order derivatives. Of course there is 
an interaction between the score-operator and the score-argument. For example, 
the zeroth-order derivative for the likelihood score-space is expected to be less use­
ful than its counter-part in the likelihood-ratio score-space because of its greater 
sensitivity to acoustic conditions. A principled approach to using derivatives in 
score-spaces would be useful. Consider the simple case of true class-conditional 
generative models P1(OIOd and P2(OI02) with respective estimates of the same 
functional form P1 (0 10d and P2 (0102 ) . Expressing the true models as Taylor se­
ries expansions about the parameter estimates 01 and O2 (see [7] for more details, 
and [3]) , 

Inpi (OIOi ) + (Oi - Oi ) TV' 9i Inpi (OIOi ) 

1 A T T A A ( 3) 
+"2(Oi - Oi ) [V' 9i V' 9

i 
Inpi (OIOi )](Oi - Oi ) + 0 Oi (·) 

will , V'~i' vec(V' 9i V'~) T . . . ]T Inpi (OIOi ) (11) 

The output from the operator in square brackets is an infinite number of derivatives 
arranged as a column vector. Wi is also a column vector. The expressions for the 
two true models can be incorporated into an optimal minimum Bayes error decision 

A AT AT 
rule as follows , where 0 [01 , 02 ]T , W = [w i, WJjT, and b encodes the class 
priors, 

Inp1(OIOd -lnp2(OI02) + b a 
wi[l, V'~1' vec(V' 91 V'~1) T ... ]T Inp1 (OIOd-

wJ [l , V'~,' vec(V' 92 V'~) T ... ]T Inp2(OI02) + b a 

T[ T ( T ) T ]T I P1(OIOd b w 1, V' 9' vec V' 9 V' 9 . . . n A + 
P2(OI02) 

a 

w T iplr(o) + b a (12) 

iplr(o) is a score in the likelihood-ratio score-space formed by an infinite number of 
derivatives with respect to the parameter estimates O. Therefore, the optimal deci­
sion rule can be recovered by constructing a well-trained linear classifier in iplr(o) . 
In this case, the standard SVM margin can be interpreted as the log posterior mar­
gin. This justifies the use of the likelihood-ratio score-space and encourages the 
use of higher-order derivatives. However, most HMMs used in speech recognition 
are 1st-order Markov processes but speech is a high-order or infinite-order Markov 



process. Therefore, a linear decision boundary in the likelihood-ratio score-space de­
fined on 1st-order Markov model estimates is unlikely to be sufficient for recovering 
the optimal decision rule due to model incorrectness. However, powerful non-linear 
classifiers may be trained in such a likelihood-ratio score-space to try to compensate 
for model incorrectness and approximate the optimal decision rule. SVMs with non­
linear kernels such as polynomials or Gaussian Radial Basis Functions (GRBFs) may 
be used. Although gains are expected from incorporating higher-order derivatives 
into the score-space, the size of the score-space dramatically increases. Therefore, 
practical systems may truncate the likelihood-ratio score-space after the 1st-order 
derivatives, and hence use linear approximations to the Taylor series expansions3. 

However, an example of a 2nd-order derivative is V' J-L jk �(�V�'�~�;�k� Inp(OIO)), 

T 

V' J-L;k �(�V�'�~�;�k� Inp(OIO)) �~� - L 'Yjk(t)"2';;k1 (13) 
t = l 

For simplicity the component posterior 'Y j k (t) is assumed independent of J-L j k. Once 
the score-space has been defined, an SVM classifier can be built in the score-space. 
If standard linear, polynomial or GRBF kernels are used in the score-space, then 
the space is assumed to have a Euclidean metric tensor. Therefore, the score-space 
should first be whitened (i.e. decorrelated and scaled) before the standard kernels 
are applied. Failure to perform such score-space normalisation for a linear kernel 
in score-space results in a kernel similar to the Plain kernel [5]. This is expected 
to perform poorly when different dimensions of score-space have different dynamic 
ranges [2]. Simple scaling has been found to be a reasonable approximation to 
full whitening and avoids inverting large matrices in [2] (though for classification 
of single observations rather than sequences, on a different database). The Fisher 
kernel in [4] uses the Fisher Information matrix to normalise the score-space. This 
is only an acceptable normalisation for a likelihood score-space under conditions 
that give a zero expectation in score-space. The appropriate SVM kernel to use 
between two utterances Oi and OJ in the normalised score-space is therefore the 
Normalised kernel, kN(Oi, OJ) (where �~�s �c� is the covariance matrix in score-space), 

(14) 

3 Experimental Results 

The ISOLET speaker-independent isolated letter database [8] was used for eval­
uation. The data was coded at a 10 msec frame rate with a 25.6 msec window­
size. The data was parameterised into 39-dimensional feature vectors including 12 
MFCCs and a log energy term with corresponding delta and acceleration parame­
ters. 240 utterances per letter from isolet{ 1,2,3,4} were used for training and 
60 utterances per letter from isolet5 for testing. There was no overlap between 
the training and test speakers. Two sets of letters were tested, the highly con­
fusible E-set, {B C D E G P T V Z}, and the full 26 letters. The baseline HMM 
system was well-trained to maximise likelihood. Each letter was modelled by a 
10-emitting state left-to-right continuous density HMM with no skips, and silence 
by a single emitting-state HMM with no skips. Each state output distribution had 
the same number of Gaussian components with diagonal covariance matrices. The 
models were tested using a Viterbi recogniser constrained to a silence-letter-silence 
network. 

31t is useful to note that a linear decision boundary, with zero bias, constructed in a 
single-dimensional likelihood-ratio score-space formed by the zeroth-order derivative oper­
ator would, under equal class priors, give the standard minimum Bayes error classifier. 








