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Abstract

The hierarchical hidden Markov model (HHMM) is a generalization of
the hidden Markov model (HMM) that models sequences with structure
at many length/time scales [FST98]. Unfortunately, the original infer-
ence algorithm is rather complicated, and takes O(T'®) time, where T is
the length of the sequence, making it impractical for many domains. In
this paper, we show how HHMMs are a special kind of dynamic Bayesian
network (DBN), and thereby derive a much simpler inference algorithm,
which only takes O(T') time. Furthermore, by drawing the connection
between HHMMs and DBNSs, we enable the application of many stan-
dard approximation techniques to further speed up inference.

1 Introduction

The Hierarchical HMM [FST98] is an extension of the HMM that is designed to
model domains with hierarchical structure, e.g., natural language, XML, DNA sequences
[HIM*00], handwriting [FST98], plan recognition [BVWOO], visual action recogntion
[IBOO, MEO1, Hoe01], and spatial navigation [TRM01, BVWO01]. HHMMs are less ex-
pressive than stochastic context free grammars (SCFGs), since they only allows hierarchies
of bounded depth, but they are more efficient and easier to learn. Unfortunately, the original
inference algorithm! described in [FST98] is somewhat complicated, and takes O(T3QP)
time, where T is the length of the sequence, D is the depth of the hierarchy, and @ is the
(maximum) number of states at each level of the hierarchy. In this paper, we show how to
represent an HHMM as a dynamic Bayesian network (DBN), and thereby derive a much
simpler and faster inference algorithm, which takes at most O(TQ?P) time; empirically,
we find it takes only O(T'DQI*->P1) time using the junction tree algorithm. Furthermore,
by drawing the connection between HHMMs and DBNSs, we enable the application of ap-
proximate inference techniques such as belief propagation, which can perform inference in
O(T D?@Q?) time.

!By inference, we mean offline smoothing, i.e., conditioning on a fixed-length observation se-
quence. This is needed as a subroutine for EM. Once the model has been learned, it will typically be
used for online inference (filtering).



Figure 1: A 3-level hierarchical automaton representing the regular expression a(zy) tolc(zy)™d.
Solid lines represent horizontal transitions, dotted lines represent vertical transitions. Letters below a
production state represent the symbol that is emitted. The unnumbered root node is considered level
0, and could be omitted if we fully interconnected states 0 and 1.

We will describe HHMM s in Section 2, and the original O(T'®) inference algorithm in
Section 3. The main contribution of the paper is in Section 4, where we show how to
represent an HHMM as a DBN. In Section 5, we discuss how to do efficient inference in
this DBN, and in Section 6, we discuss related work. In the full version of this paper, we
discuss how to do parameter and structure learning using EM.

2 Hierarchical HMMs

HHMMs are like HMMs except the states of the stochastic automaton can emit single
observations or strings of observations. (For simplicity of exposition, we shall assume
all observations are discrete symbols, but HHMMs can easily be generalized to handle
continuous observations, as we discuss in Section 4.1.) Those that emit single symbols
are called “production states”, and those that emit strings are termed “abstract states”. The
strings emitted by abstract states are themselves governed by sub-HHMMs, which can be
called recursively. When the sub-HHMM is finished, control is returned to wherever it was
called from; the calling context is memorized using a depth-limited stack.

We illustrate the generative process with Figure 1, which shows the state transition diagram
of an example HHMM which models the regular expression a(zy)*b|c(zy)*d). We start
in the root state, and make a “vertical transition” to one of its children, say state 0. From
here, we make another vertical transition to state 2. Since state 2 is a production state, it
emits “a” and then makes a “horizontal transition” to state 3. State 3 calls its sub-HMM,
which emits x’s and y’s until it enters its end state; then control is returned to the calling
state, in this case state 3. We then make a horizontal transition to state 4, emit “b”, and
enter the end state, thereby returning control to state 0. Finally, from state 0, we return
control to the root, and optionally start again.

Any HHMM can be converted to an HMM by creating a state for every possible legal stack
configuration @} If the HHMM transition diagram is a tree, there will be one HMM state
for every HHMM production state. If the HHMM transition diagram has shared substruc-
ture (such as the sub-expression (zy)™T), this structure must be duplicated in the HMM,
generally resulting in a larger model. It is the ability to reuse sub-models in different con-



texts that makes HHMMs more powerful than standard HMMs. In particular, the parame-
ters of such shared sub-models only need to be learned once. (Given segmented data, we
can train the sub-HMMs separately, and then “glue them together”, but it is also possible
to train the HHMM on unsegmented data; see the full version of this paper for details.)

3 Cubic-timeinference

The inference algorithm for HHMMs presented in [FST98] runs in O(T2) time and is
based on the Inside-Outside algorithm [LY90], an exact inference algorithm for stochastic
context-free grammars (SCFGs) which we now describe.

In an SCFG, sequences of observations are generated by a set of stochastic production
rules. Each production rule stochastically rewrites a non-terminal symbol N into either
a symbol of the alphabet (N % a) or a pair of nonterminal symbols (N % NiN*),
Observation strings are generated by starting with the distinguished “start” nonterminal
N, and continually re-writing all non-terminals using stochastic production rules until,
finally, only symbols of the alphabet remain.

The Inside-Outside algorithm computes P(N? — NIN*|Og.4yr), Where Opirp =
Oy¢, O¢q1,...,0¢pr 1S @ subsequence. This can then be used to compute the expected
sufficient statistics needed by the EM algorithm to learn the parameters of the model. If
there are N non-terminals in the grammar and the training sequence is of length 7', then the
Inside-Outside algorithm requires O(N3T?) time. To see why, note that we must compute
P(Nt — NIN¥|0y.4+,) for all end points ¢ and ¢ + 7, and for all midpoints 7' such that
N generates Oy.;4. and N* generates Oy .4 1.44» — the three degrees for freedom ¢,7
and 7' gives rise to the T3 term. The N3 term arises because we must consider all N'¢, N7
and N*.

The inference algorithm for HHMMs presented in [FST98] is based upon a straight-
forward adaptation of the Inside-Outside algorithm. The algorithm computes
P(in state ¢¢ at time ¢|Oy.,1,) by assuming that sub-state q;.”l generates Oy.¢ ., that a
transition to state k£ occurs, and that q,‘f“ generates O¢4r741:447. Hence the algorithm
takes O(NT?) time, where N is the total number of states.

We can always “flatten” an HHMM into a regular HMM and hence do inference in
O(N?T). Unfortunately, this flat model cannot represent the hierarchical structure, yet
alone learn it. In the next section, we show how to represent the HHMM as a DBN, and
thereby get the best of both worlds: low time complexity without losing hierarchical struc-
ture.

4 RepresentingtheHHMM asa DBN

We can represent the HHMM as a dynamic Bayesian network (DBN) as shown in Figure 2.
(We assume for simplicity that all production states are at the bottom of the hierarchy;
this restriction is lifted in the full version of this paper.) The state of the HMM at level d
and time ¢ is represented by Q¢. The state of the whole HHMM is encoded by the vector
Qt = (Q}, ..., QP); intuitively, this encodes the contents of the stack, that specifies the
complete “path” to take from the root to the leaf state.

Fis an indicator variable that is “on” if the HMM at level d and time ¢ has just “finished”
(i.e., is about to enter an end state), otherwise it is off. Note that if Fi# = 1, then F¥ =1



Figure 2: An HHMM represented as a DBN. Q¢ is the state at time ¢, level d; FZ8 = 1 if the
HMM at level d has finished (entered its exit state), otherwise F! = 0. Shaded nodes are observed:;
the remaining nodes are hidden. We may optionally clamp F¢ = 1, where T is the length of the
observation sequence, to ensure all models have finished by the end of the sequence. (A similar trick
was used in [Zwe97].)

for all d' > d; hence the number of F' nodes that are “off” represents the effective height
of the “context stack™, i.e., which level of the hierarchy we are currently on.

The downward going arcs between the ) variables represent the fact that a state “calls” a
sub-state. The upward going arcs between the F' variables enforce the fact that a higher-
level HMM can only change state when the lower-level one is finished. This ensures proper
nesting of the parse trees, and is the key difference between an HHMM and a hidden
Markov decision tree [JGS96].

We will define the conditional probability distributions (CPDs) of each of the node types
below, which will complete the definition of the model. We consider the bottom, middle
and top layers of the hierarchy separately (since they have different local topology), as well
as the first, middle and last time slices.

4.1 Definition of the CPDs

Consider the bottom level of the hierarchy. QP follows a Markov chain with parameters
determined by its position in the automaton, which is encoded by the vector of higher-up
state variables Q; P! = Q}, ..., QP ", which we will represent by the integer k.2 When

2|f the topology is sparse, this distribution will be 0 for many values of k. This will be discussed
in Section 4.2.



QP enters its end state, it will “turn on” F'P, to mean it is finished; this will be a signal
that higher-level HMMs can now change state. In addition, it will be a signal that the next
value of QP should be drawn from its prior distribution (representing a vertical transition),
instead of its transition matrix (representing a horizontal transition). Formally, we can write
this as follows:

. . D AP, ) iff=0
R N R i 1

) iff=1
where we have assumed i, j # end. AP is the transition matrix for level D given that the
parent variables are in state k, and AL is just a rescaled version of AP.3 Similarly, 7P is

the initial distribution for level D given that the parent variables are in state k. The equation
for Fp is simply

P(EP =11Q}P ' = k,QP = i) = AP(i,end).

Now consider the intermediate levels. As before, Q¢ follows a Markov chain with param-
eters determined by Q41 and F'¢ specifies whether we should use the transition matrix
or the prior. The difference is that we now also get a signal from below, F?+!, specifying
whether the sub-model has finished or not; if it has, we are free to change state, otherwise
we must remain in the same state. Formally, we can write this as follows:

8(i,j) ifb=0
PQf =jlQf =i, F = b, FL = £,Q4 " =k) = ¢ Ad(i,j) ifb=1andf=0
nl(j) ifb=1landf=1

F? should “turn on” only if Q¢ is “allowed” to enter a final state, the probability of which
depends on the current context Q**¢—1, Formally, we can write this as follows:

PR =11Qf =i,QF " =k, F{ = 1) = { (i.ond) 61

The top level differs from the intermediate levels in that the @) node has no @ parent to
specify which distribution to use. The equations are the same as above, except we eliminate
the conditioning on Q14— = k. (Equivalently, we can imagine a dummy top layer HMM,
which is always in state 1: Q9 = 1. This is often how HHMM s are represented, so that this
top-level state is the root of the overall parse tree, as in Figure 1.)

The CPDs for the nodes in the first slice are as follows: P(Q1 = j) = = (j) for the top
level and P(Q¢ = j|Q ! = k) = 7l(j), ford = 2,...,D.

If the observations are discrete symbols, we may represent P(Ot|@t) as a multinomial
(i.e., using a table), or by using any of the more parsimonious representations discussed
in Section 4.2. If the observations are real-valued vectors, we can use a Gaussian for each
value of Qt, or a mixture of a smaller number of Gaussians, as in [GJ97].

3Unlike the automaton representation, the DBN never actually enters an end state (i.e., Q¢ can
never taken on the value “end”), because if it did, it would not be able to emit the symbol O ;. Instead,
Q¢ causes F to turn on, and then enters a new (non-terminal) state at time ¢ + 1. This means
that the DBN and HHMM transition matrices are not identical, but satisfy the following relation:
Af(i,4) (L = 7(4)) = AL(i, j), where A represents the automaton transition matrix, A represents

the DBN transition matrix, and 7 () def A% (3, end) is the probability of terminating from state s.
The equations holds because the probability of each horizontal transition in the DBN gets multiplied
by the probability that Fi¢ = 0, which is 1 —7£(4); this product should match the original probability.
It is easy to see that the new matrix is also stochastic, as required.



4.2 Parsimonious representations of the CPDs

The number of parameters needed to represent P(Q¥| Q¢ ,, Ql}’d‘l = k) as a multinomial
is O(Q*1). If the state-transition diagram of the hierarchical automaton is sparse, many of
the entries in this table will be 0. However, when we are learning a model, we do not know
the structure of the state-transition diagram, and must therefore adopt a representation with
fewer parameters. There are at least three possibilities: decision trees [BFGK96], softmax
nodes, or representing P(Q%|Q¢ ,, Q1! = k) as a mixture of smaller transition matrices
at different depths c.f. [SJ99]. See the full version of this paper for details.

5 Linear-timeinference

We define inference to be computing P(.S;|O1.7) for all sets of nodes S; = {i} Uparents(4)
in the DBN. These “family” marginals are needed by EM. The simplest way to do this is to
merge all the hidden nodes in each slice into a single “mega node”, M;, with M = 2PQP
possible values. (The 2P term arises from the binary F' nodes.) We can then apply the
forwards-backwards algorithm for HMMs, which takes O(M2T) time.

Unfortunately, converting the DBN to an HMM in this way will not be tractable for reason-
ably large @ or D. (Even storing the M x M transition matrix is likely to consume too much
space.) Fortunately, we can do better by exploiting the structure of the model. In [Mur01],
we present a way of applying the junction tree (jtree) algorithm to variable-length DBNs;
we give a brief sketch here. The algorithm works by performing a forwards-backwards
sweep through a chain of jtrees. Each jtree is formed from a “1%—slice DBN”; this is a
DBN that contains all the nodes in slice 1 but only the interface nodes from slice 2. The
interface nodes are those nodes in slice 2 that have an incoming temporal arc, plus parents
of nodes that have incoming temporal arcs. In the case of an HHMM, the interface is all
the @@ nodes.

The cost of doing inference in each jtree depends on the sizes of the cliques. Minimizing
the maximal clique size is NP-hard, so we used a standard one-step look-ahead (greedy)
algorithm [Kja90]. The resulting cliques are hard to interpret, but we can still analyze the
complexity. Let Ng(e, D) be the number of @ nodes in clique ¢, let Nr(c, D) be the
number of F' nodes, and let N.(D) be the number of cliques. Then the cost of inference in
a jtree is proportional to

Nc(D)
Z QNQ(C,D) x 2Np(c,D) < NC(D) x QmaxC Ng(c,D) % QmaXe Ng(c,D)

c=1

Empirically we find that, for a wide range of D, N.(D) < D + 2, max. Np(¢,D) <
[0.5D] and max, Ng(c, D) <1+ [1.5D]. Hence a crude upper bound on the cost of in-
ference in each jtree is O((D +2)Q1-5P1210-5P1) yielding an overall time and space com-
plexity of O(TDQ-*P1). We remind readers that the original algorithm has O(T*QP)
time complexity, since there can be up to N = QP states in the HHMM. The advantage of
the new algorithm in practice is clearly illustrated in Figure 3.

We can reduce the time (and space) complexity from O(TDQ''-5P1) to O(TDQP) by
using approximate DBN inference techniques such as the “factored frontier (FF) algorithm”
[MWO01], which is equivalent to applying “loopy belief propagation” to the DBN using a
left-right scheduling of the messages. (It is still exponential in D because of the high fan-in
of the nodes.) We can get a further speedup by using a mixture representation of the CPDs
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Figure 3: Running time vs. sequence length. Both algorithms were implemented in Matlab. The
HHMM has D = 2, Q = 3.

(see Section 4.2). In this case, we can exploit the form of the CPD to compute the required
messages efficiently [Mur99], bringing the overall complexity down to O(T D?Q?).

We remark that all of the above algorithms can also be used for online filtering. In addition,
by replacing the sum operator with max, we can do Viterbi segmentation in the usual way.

6 Reated work

Hidden Markov decision trees (HMDT) [JGS96] are DBNs with a structure similar to Fig-
ure 2, but they lack the F' nodes and the upward going arcs; hence they are not able to
represent the call-return semantics of the HHMM. Embedded HMMs [N10Q] are a special
case of HHMMs in which the ending “time” of the sub-HMMs is known in advance (e.g.,
the sub-HMM models exactly one row of pixels). ([Hoe01] calls these models “hierarchi-
cal mixture of Markov chains”.) A variable-duration HMM [Rab89] is a special case of a
2-level HHMM, where the bottom level counts how long we have been in a certain state;
when the counter expires, the F' node turns on, and the parent can change state.

[BVWO0O] describes the “Abstract HMM” (AHMM), which is very closely related to HH-
MMs. These authors are interested in inferring what abstract policy an agent is following
by observing its effects in the world. An AHMM is equivalent to an HHMM if we consider

4 to represent the (abstract) policy being followed at level d and time ¢; QP represents
the concrete action, which causes the observation. We also need to add a hidden global
state variable Sz, which is a parent of the O; node, all the F; nodes and all the Q;11 nodes.
(S; is hidden to us as observers, but not to the agent performing the actions.) [BVWO00]
consider abstract policies of the “options” kind [SPS99], which is equivalent to assuming
that there are no horizontal transitions. (HAMs [PR97] generalize this by allowing hori-
zontal transitions (i.e., internal state) within a controller.) In addition, they assume that Q¢
only depends on its immediate parent, @¢~*, but not its whole context, Q%= so the @
nodes become connected by a chain. This enables them to use Rao-Blackwellized particle
filtering for approximate online inference: conditioned on the F' nodes, the distribution
over the @ nodes can be represented as a product of marginals, so they can be efficiently
marginalized out.
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