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Abstract 
Hebbian and competitive Hebbian algorithms are almost ubiquitous in 
modeling pattern formation in cortical development. We analyse in the­
oretical detail a particular model (adapted from Piepenbrock & Ober­
mayer, 1999) for the development of Id stripe-like patterns, which places 
competitive and interactive cortical influences, and free and restricted ini­
tial arborisation onto a common footing. 

1 Introduction 

Cats, many species of monkeys, and humans exibit ocular dominance stripes, which are 
alternating areas of primary visual cortex devoted to input from (the thalamic relay associ­
ated with) just one or the other eye (see Erwin et aI, 1995; Miller, 1996; Swindale, 1996 
for reviews of theory and data). These well-known fingerprint patterns have been a seduc­
tive target for models of cortical pattern formation because of the mix of competition and 
cooperation they suggest. A wealth of synaptic adaptation algorithms has been suggested 
to account for them (and also the concomitant refinement of the topography of the map 
between the eyes and the cortex), many of which are based on forms of Hebbian learning. 
Critical issues for the models are the degree of correlation between inputs from the eyes, 
the nature of the initial arborisation of the axonal inputs, the degree and form of cortical 
competition, and the nature of synaptic saturation (preventing weights from changing sign 
or getting too large) and normalisation (allowing cortical and/or thalamic cells to support 
only a certain total synaptic weight). Different models show different effects of these pa­
rameters as to whether ocular dominance should form at all, and, if it does, then what 
determines the widths of the stripes, which is the main experimental observable. 

Although particular classes of models excite fervid criticism from the experimental com­
munity, it is to be hoped that the general principles of competitive and cooperative pattern 
formation that underlie them will remain relevant. To this end we seek models in which we 
can understand the interactions amongst the various issues above. Piepenbrock & Ober­
mayer (1999) suggested an interesting model in which varying a single parameter spans 
a spectrum from cortical competition to cooperation. However, the nature of competition 
in their model makes it hard to predict the outcome of adaptation completely, except in 
some special cases. In this paper, we suggest a slightly different model of competition 
which makes the analysis tractable, and simultaneously generalise the model to consider 
an additional spectrum between flat and peaked arborisation. 

2 The Model 

Figure 1 depicts our model. It is based on the competitive model of Piepenbrock & Ober­
mayer (1999), who developed it in order to explore a continuum between competitive and 
linear cortical interactions. We use a slightly different competition mechanism and also 
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Figure 1: Competitive ocular dominance model. A) Left (L) and right (R) input units (with activi­
ties uL (b) and uR(b) at the same location b in input space) project through weights WL(a, b) and 
WR(a, b) and a restricted topography arbor function A(a, b) (B) to an output layer, which is subject 
to lateral competitive interactions. C) Stable weight patterns W(a , b) showing ocular dominance. D) 
(left) difference in the connections W- = W R - W L from right and left eye; (right) sum difference 
across b showing the net ocularity for each a. Here, O"A = 0.2, 0"[ = 0.08, O"u = 0.075 , f3 = 10, 
I = 0.95, n = 3. There are N = 100 units in each input layer and the output layer. Circular 
(toroidal) boundary conditions are used with bE [0, 1) . 

extend the model with an arbor function (as in Miller et aI, 1989). The model has two 
input layers (representing input from the thalamus from left 'L' and right 'R' eyes), each 
containing N units, laid out in a single spatial dimension. These connect to an output layer 
(layer IV of area VI) with N units too, which is also laid out in a single spatial dimension. 
We use a continuum approximation, so labeling weights W L ( a, b) and W R ( a, b) . An ar­
bor function, A(a, b), represents the multiplicity of each such connection (an example is 
given in figure IB). The total strengths of the connections from b to a are the products 
WL(a,b)A(a, b) and WR(a,b)A(a, b). 
Four characteristics define the model: the arbor function, the statistics of the input; the map­
ping from input to output; and the rule by which the weights change. The arbor function 
A(a, b) specifies the basic topography of the map at the time that the pattern of synaptic 
growth is being established. We consider A(a, b) ()( e-(a-b)2 /20-1 , where O"A is a parameter 
specifies its width (figure IB). The two ends of the spectrum for the arbor are fiat, when 
A(a, b) = 0: is constant (O"A = 00), and rigid or punctate, when A(a, b) ()( c5(a - b) (O"A = 0) 
and so input cells are mapped only to their topographically matched cells in the cortex. 

The second component of the model is the input. Since the model is non-linear, pattern 
formation is a function of aspects of the input in addition to the two-point correlations 
between input units that drive development of standard, non-competitive, Hebbian models. 
We follow Piepenbrock & Obermayer (1999) and consider highly spatially simplified input 
activities at location b in the left (uL (b) and right (uR (b) projections, refiecting just a 
single Gaussian bump (of width oV) which is stronger to the tune of I in (a randomly 
chosen) one of the input projections than the other 

uL(b) = 0.5(1 + zl)e-(b-e)2/20-~ uR(b) = 0.5(1- zl)e-(b-e) 2 /20-~ (1) 

where ~ E [0,1) is the randomly chosen input location, z is -lor 1 (with probability 0.5 
each), and determines whether the input is more from the right or left projection. 0::::: I ::::: 1 
governs the weakness of correlations between the projections . 

The third component of the model is the way that input activities and the weights conspire 
to form output activities. This happens in linear (I), competitive (c) and interactive (i) steps: 

I: v(a) = JdbA(a,b) (WL(a,b)uL(b) + WR(a,b)uR(b)) , (2) 

c : v~a) = (v(a))/3 / Jda' (v(a'))/3 i : vi(a) = Jda' I(a, a')v~a) (3) 

Weights, arbor and input and output activities are all positive. In equation 3c, f3 ~ 1 is a 
parameter governing the strength of competition between the cortical cells. As f3 -+ 00, the 
activation process becomes more strongly competitive, ultimately having a winner-takes-all 
effect as in the standard self-organising map. This form of competition makes it possible 



to perform analyses of pattern formation that are hard for the model of Piepenbrock & 
Obermayer (1999). A natural form for the cortical interactions of equation 3i is the purely 
positive Gaussian I(a, at) = e-(a-a')2/2o} . 

The fourth component of the model is the weight adaptation rule which involves the 
Hebbian correlation between input and output activities, averaged over input patterns ez. 
The weights are constrained W(a, b) E [0,1], and also multiplicatively normalised so 
fdbA(a, b)(WL(a, b) + WR(a, b)) = n, for all a. 

WL(a, b) -+ WL(a, b) + E( (vi(a)uL(b))~z - A(a)WL(a, b)) . (4) 

(similarly for WR) where A(a) = A(a)(WL, WR) is chosen to enforce normalisation. 

The initial values for the weights are WL,R = we-(a-b)2/20'~ +1]8WL,R, where w is cho­
sen to satisfy the normalisation constraints, 1] is small, and 8WL(a, b) and 8WR(a, b) are 
random perturbations constrained so that normalisation is still satisfied. Values of u~ < 00 
can emerge as equilibrium values of the weights if there is sufficient competition (suffi­
ciently large (3) or a restricted arbor (ul < 00). 

3 Pattern Formation 

We analyse pattern formation in the standard manner, finding the equilibrium points (which 
requires solving a non-linear equation), linearising about them and finding which linear 
mode grows the fastest. By symmetry, the system separates into two modes, one involving 
the sum of the weight perturbations 8W+ =8WR+8WL, which governs the precision of 
the topography of the final mapping, and one involving the difference 8W+ = 8WR-;5WL, 
which governs ocular dominance. The development of ocular dominance requires that a 
mode of 8W- (a, b) # 0 grows, for which each output cell has weights of only one sign 
(either positive or negative). The stripe width is determined by changes in this sign across 
the output layer. Figure 1 C;D show the sort of patterns for which we would like to account. 

Equilibrium solution 

The equilibrium values of the weights can be found by solving 

(5) 

for the A+ determined such that the normalisation constraint fdb W L (a, b) + W R ( a, b) = 
n is satisfied for all a. v(a) is a non-linear function of the weights; however, the sim­
ple form of the inputs means that at least one set of equilibrium values of WL(a, b) and 
WR(a, b) are the same, WL(a, b) = we-(a-b)2 /20'~ for a particular width Uw that de­
pends on I = 1/ ul, A = 1/ ul, U = 1/ ub and (3 according to a simple quadratic equation. 
We assume that w < 1, so the weights do not reach their upper saturating limit, and this im-
plies thatw = 2~J(A + W)/1l'. 
The quadratic equation governing the equilibrium width can be derived by postulating 
Gaussian weights, and finding the values successively of v(a), v"(a) and vi(a) of equa­
tions 2 and 3, calculating ((vi(a)uL (b)) ~z and finding a consistency condition that W must 

satisfy in orderfor W L (a, b) -+ W L (a, b) in equation 4. The result is 

(((3 + I)I + (3U)W2 + (A(((3 + I)I + (3U) - ((3 - I)UI)W - (3AIU = 0 (6) 

Figure 2 shows how the resulting physically realisable (W > 0) equilibrium value of Uw 
depends on (3, UA and UI, varying each in turn about a single set of values in figure 1. 
Figure 2A shows that the width rapidly asymptotes as (3 grows, and it only gets large as the 
arbor function gets large for (3 near 1. Figure 2B shows this in another way. For (3 = 1 (the 
dotted line), which quite closely parallels the non-competitive case of Miller et al (1989), 
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Figure 2: Log-log plots of the equilibrium values of ow in the case of multiplicative normalisation. 
Solid lines based on parameters as in figure 1 (aA = 0.2, a[ = 0.08, au = 0.075, fl = 10). A) aw 
as a function of fl for aA = 0.2 (solid), aA = 2.0 (dotted) and aA = 0.0001 (dashed). B) aw as a 
function of aA for fl = 10 (solid), fl = 1.25 (dashed) and fl = 1.0 (dotted). C) aw as a function of 
a[. Other parameters as for the solid lines. 

aw grows roughly like the square root of aA as the arborisation gets flatter. For any (3 > 1, 
one equilibrium value of aw has a finite asymptote with UA. For absolutely flat topography 
(UA = 00) and (3 > 1, there are actually two equilibrium values for uw, one with Uw = 00, 
ie flat weights; the other with Uw taking values such as the asymptotic values for the dotted 
and solid lines in figure 2B. 

The sum mode 

The update equation for (normalised) perturbations to the sum mode is 8W+ (a, b) -t 

(1 - f.A+)oW+(a, b) + f~ II daldb l O(a, b, al, bdoW+(al' bl ) - f.A'(a)W+(a, b) (7) 

where the operator 0 = 0 1 - 0 2 is defined by averaging over ~ with z = 1, 'Y = 1 

01 (a, b, aI, bl ) = (I da2I(a, a2)v"(a2) 6~t:t) A(al' bl)uR(bl)uR(b)) (8) 

02(a,b,al,bl ) = (I da2I(a,a2)v"(a2)~t:SA(al,bt)uR(bl)uR(b)) , (9) 

where, for convenience, we have hidden the dependence of v(a) and v"(a) on ~ and z. 
Here, the values of A+ and 

A'Ca) = (3 III dbdaldbl A(a, b)O(a, b, aI, bl )8W+(al, bl )/2f2 (10) 

come from the normalisation condition. The value of A+ is determined by W+(a, b) and 
not by 8W+(al,bl ). Except in the special case that UA = 00, the term f.A'(a)W+(a,b) 
generally keeps stable the equilibrium solution. 

We consider the full eigenfunctions ofO(a, b, aI, bl ) below. However, the case that Piepen­
brock & Obermayer (1999) studied of a flat arbor function (u A = 00) turns out to be spe­
cial, admitting two equilibrium solutions, one flat, one with topography, whose stability 
depends on (3. For UA < 00, the only Gaussian equilibrium solution for the weights has 
a refined topography (as one might expect), and this is stable. This width depends on the 
parameters in a way shown in equation 6 and figure 2, in particular, reaching a non-zero 
asymptote even as (3 gets very large. 

The difference mode 

The sum mode controls the refinement of topography, whereas the difference mode controls 
the development and nature of ocular dominance. The equilibrium value of W- (a, b) is 
always 0, by symmetry, and the linearised difference equation for the mode is 

oW- (a , b) -t (l-f.A+)oW-(a, b) + fflt II daldbl O(a, b, al, bl)OW- (al' bd (11) 
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Figure 3: Eigenfunctions and eigenvalues of 0 1 (left block), 0 2 (centre block), and and the theoret­
ical and empirical approximations to 0 (right columns). Here, as in equation 12, k is the frequency 
of alternation of ocularity across the output (which is integral for a finite system); n is the order of 
the Hermite polynomial. The numbers on top of each eigenfunction is the associated eigenvalue. 
Parameters are as in figure 1 with I = 1. 

which is almost the same as equation 7 (with the same operator 0), except that the mul­
tiplier for the integral is (3"(2 /2 rather than (3 /2. Since "( < 1, the eigenvalues for the 
difference mode are therefore all less than those for the sum mode, and by the same frac­
tion. The multiplicative decay term EA+JW- (a, b) uses the same A+ as equation 7, whose 
value is determined exclusively by properties of W+ (a, b); but the non-multiplicative term 
EA'(a)W+(a, b) is absent. Note that the equilibrium values of the weights (controlled by 
ow) affect the operator 0, and hence its eigenfunctions and eigenvalues. 

Provided that the arbor and the initial values of the weights are not both flat (aA =j:. 00 or 
aw =j:. 00), the principal eigenfunctions of 0 1 and 0 2 have the general form 

(12) 

where Pn(r, k) is a polynomial (related to a Hermite polynomial) of degree n in r whose 
coefficients depend on k. Here k controls the periodicity in the projective field of each 
input cell b to the output cells, and ultimately the periodicity of any ocular dominance 
stripes that might form. The remaining terms control the receptive fields of the output cells. 
Operator 0 2 has zero eigenvalues for the polynomials of degree n > 0. The expressions 
for the coefficients of the polynomials and the non-zero eigenvalues of 0 1 and 0 2 are 
rather complicated. Figure 3 shows an example of this analysis. The left 4 x 3 block 
shows eigenfunctions and eigenvalues of 0 1 for k = 0 ... 5 and n = 0, 1, 2; the middle 
4 x 3 block, the equivalent eigenfunctions and eigenvalues of 0 2 . The eigenvalues come 
essentially from a Gaussian, whose standard deviation is smaller for 0 2 . To a crude first 
approximation, therefore, the eigenvalues of 0 resemble the difference of two Gaussians in 
k, and so have a peak at a non-zero value of k, ie a finite ocular dominance periodicity. 

However, this approximation is too crude. Although the eigenfunctions of 0 1 and 0 2 

shown in figure 3 look almost identical, they are, in fact, subtly different, since 0 1 and 0 2 

do not commute (except for flat or rigid topography). The similarity between the eigenfunc­
tions makes it possible to approximate the eigenfunctions of 0 very closely by expanding 
those of 0 2 in terms of 0 1 (or vice-versa). This only requires knowing the overlap between 
the eigenfunctions, which can be calculated analytically from their form in equation 12. Ex­
panding for n ~ 2 leads to the approximate eigenfunctions and eigenvalues for 0 shown in 
the penultimate column on the right of figure 3. The difference, for instance, between the 
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Figure 4: A) The constraint term >'+(0./ N) (dotted line) and the ocular dominance eigenvalues 
e(k)(Q/N) (solid line 7 = 1; dotted line 7 = 0.5) of /3720/2 as a function of C>[ , where k is the 
stripe frequency associated with the maximum eigenvalue. For C>[ too large, the ocular dominance 
eigenfunction no longer dominates. The star and hexagon show the maximum values of C>r such that 
ocular dominance can form in each case. The scale in (A) is essentially arbitrary. B) Stripe frequency 
k associated with the largest eigenvalue as a function of C>r. The star and hexagon are the same as in 
(A), showing that the critical preferred stripe frequency is greater for higher correlations between the 
inputs (lower 7). Only integer values are considered, hence the apparent aliasing. 

eigenfunction of 0 for k = 3 and those for 0 1 and 0 2 is striking, considering the simi­
larity between the latter two. For comparison, the farthest right column shows empirically 
calculated eigenfunctions and eigenvalues of 0 (using a 50 x 50 grid). 

Putting 8W- back in terms of ocular dominance, we require that eigenmodes of 0 resem­
bling the modes with n = 0 should grow more strongly than the normalisation makes them 
shrink; and then the value of k associated with the largest eigenvalue will be the stripe fre­
quency that should be expected to dominate. For the parameters of figure 3, the case with 
k = 3 has the largest eigenvalue, and exactly this leads to the outcome of figure IC;D. 

4 Results 

We can now predict the outcome of development for any set of parameters. First, the 
analysis of the behavior of the sum mode (including, if necessary, the point about multiple 
equilibria for flat initial topography) allows a prediction of the equilibrium value of c>w, 
which indicates the degree of topographic refinement. Second, this value of C>w can be used 
to calculate the value of the normalisation parameter ).+ that affects the growth of 8W+ 
and 8W-. There is then a barrier of 2),+ / f3'''-? that the eigenvalues of 0 must surmount 
for a solution that is not completely binocular to develop. Third, if the peak eigenvalue of 
o is indeed sufficiently large that ocular dominance develops, then the favored periodicity 
is set by the value of k associated with this eigenvalue. Of course, if many eigenfunctions 
have similarly large eigenvalues, then slightly different stripe periodicities may be observed 
depending on the initial conditions. 

The solid line in figure 4A shows the largest eigenvalue of f372 0/2 as a function of the 
width of the cortical interactions C>[, for 7 = 1, the value of C>w specified through the 
equilibrium analysis, and values of the other parameters as in figure 1. The dashed line 
shows ).+, which comes from the normalisation. The largest value of C>[ for which ocular 
dominance still forms is indicated by the star. For 7 = 0.5, the eigenvalues are reduced by 
a factor of 72 = 0.25, and so the critical value of C>[ (shown by the hexagram) is reduced. 
Figure 4B shows the frequency of the stripes associated with the largest eigenvalue. The 
smaller C>[ , the greater the frequency of the stripes. This line is jagged because only integers 
are acceptable as stripe frequencies. 

Figure 5 shows the consequences of such relationships slightly differently. Some models 
consider the possibility that C>[ might change during development from a large to a small 
value. If the frequency of the stripes is most strongly determined by the frequency that 
grows fastest when C>[ is first sufficiently small that stripes grow, we can analyse plots such 
as those in figure 4 to determine the outcome of development. The figures in the top row 




