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Abstract 

We introduce a novel kernel for comparing two text documents. 
The kernel is an inner product in the feature space consisting of 
all subsequences of length k. A subsequence is any ordered se­
quence of k characters occurring in the text though not necessarily 
contiguously. The subsequences are weighted by an exponentially 
decaying factor of their full length in the text, hence emphasising 
those occurrences which are close to contiguous. A direct compu­
tation of this feature vector would involve a prohibitive amount of 
computation even for modest values of k, since the dimension of 
the feature space grows exponentially with k. The paper describes 
how despite this fact the inner product can be efficiently evaluated 
by a dynamic programming technique. A preliminary experimental 
comparison of the performance of the kernel compared with a stan­
dard word feature space kernel [6] is made showing encouraging 
results. 

1 Introduction 

Standard learning systems (like neural networks or decision trees) operate on in­
put data after they have been transformed into feature vectors XI, ••• , Xl E X from 
an n dimensional space. There are cases, however, where the input data can not 
be readily described by explicit feature vectors: for example biosequences, images, 
graphs and text documents. For such datasets, the construction of a feature extrac­
tion module can be as complex and expensive as solving the entire problem. An 
effective alternative to explicit feature extraction is provided by kernel methods. 

Kernel-based learning methods use an implicit mapping ofthe input data into a high 
dimensional feature space defined by a kernel function, i.e. a function returning the 
inner product between the images of two data points in the feature space. The 
learning then takes place in the feature space, provided the learning algorithm can 
be entirely rewritten so that the data points only appear inside dot products with 
other data points. 

Several linear algorithms can be formulated in this way, for clustering, classification 
and regression. The most typical example of kernel-based systems is the Support 



Vector Machine (SVM) [10, 3], that implements linear classification. 

One interesting property of kernel-based systems is that, once a valid kernel function 
has been selected, one can practically work in spaces of any dimensionality with­
out paying any computational cost, since the feature mapping is never effectively 
performed. In fact, one does not even need to know what features are being used. 
In this paper we examine the use of a kernel method based on string alignment for 
text categorization problems. 

A standard approach [5] to text categorisation makes use of the so-called bag of 
words (BOW) representation, mapping a document to a bag (i.e. a set that counts 
repeated elements), hence losing all the word order information and only retaining 
the frequency of the terms in the document. This is usually accompanied by the 
removal of non-informative words (stop words) and by the replacing of words by 
their stems, so losing inflection information. This simple technique has recently been 
used very successfully in supervised learning tasks with Support Vector Machines 
(SVM) [5]. 

In this paper we propose a radically different approach, that considers documents 
simply as symbol sequences, and makes use of specific kernels. The approach is 
entirely subsymbolic, in the sense that it considers the document just like a unique 
long sequence, and still it is capable to capture topic information. We build on recent 
advances [11, 4] that demonstrated how to build kernels over general structures 
like sequences. The most remarkable property of such methods is that they map 
documents to vectors without explicitly representing them, by means of sequence 
alignment techniques. A dynamic programming technique makes the computation 
of the kernels very efficient (linear in the documents length). 

It is surprising that such a radical strategy, only extracting allignment information, 
delivers positive results in topic classification, comparable with the performance 
of problem-specific strategies: it seems that in some sense the semantic of the 
document can be at least partly captured by the presence of certain substrings of 
symbols. 

Support Vector Machines [3] are linear classifiers in a kernel defined feature space. 
The kernel is a function which returns the dot product of the feature vectors ¢(x) 
and ¢(X') of two inputs x and x' K(x, x') = ¢(x)T ¢(X'). Choosing very high dimen­
sional feature spaces ensures that the required functionality can be obtained using 
linear classifiers. The computational difficulties of working in such feature spaces 
is avoided by using a dual representation of the linear functions in terms of the 
training set S = {(Xl, Y1) ,(X2, Y2), ... , (xm, Ym)}, 

m 

f(x) = LCkiYiK(X, Xi) - b. 
;=1 

The danger of overfitting by resorting to such a high dimensional space is averted 
by maximising the margin or a related soft version of this criterion, a strategy that 
has been shown to ensure good generalisation despite the high dimensionality [9,8]. 

2 A Kernel for Text Sequences 

In this section we describe a kernel between two text documents. The idea is to 
compare them by means of the substrings they contain: the more substrings in 
common, the more similar they are. An important part is that such substrings do 
not need to be contiguous, and the degree of contiguity of one such substring in a 
document determines how much weight it will have in the comparison. 



For example: the substring 'c-a-r' is present both in the word 'card' and in the 
word ' custard', but with different weighting. For each such substring there is a 
dimension of the feature space, and the value of such coordinate depends on how 
frequently and how compactly such string is embedded in the text. In order to deal 
with non-contiguous substrings, it is necessary to introduce a decay factor). E (0,1) 
that can be used to weight the presence of a certain feature in a text (see Definition 
1 for more details). 

EXaIllple. Consider the words cat, car, bat, bar. If we consider only k = 2, we 
obtain an 8-dimensional feature space, where the words are mapped as follows: 

c-a c-t a-t b-a b-t c-r a-r b-r 
rp(cat) ).2 ).3 ).2 0 0 0 0 0 
rp(car) ).2 0 0 0 0 ).3 ).2 0 
rp(bat) 0 0 ).2 ).2 ).3 0 0 0 
rp(bar) 0 0 0 ).2 0 0 ).2 ).3 

Hence, the unnormalized kernel between car and cat is K(car,cat) = ).4, wherease 
the normalized version is obtained as follows: K(car,car) = K(cat,cat) = 2).4 +).6 

and hence IC(car,cat) = ).4/(2).4 + ).6) = 1/(2 + ).2). Note that in general the 
document will contain more than one word, but the mapping for the whole document 
is into one feature space. Punctuation is ignored, but spaces are retained. 

However, for interesting substring sizes (eg > 4) direct computation of all the rele­
vant features would be impractical even for moderately sized texts and hence explicit 
use of such representation would be impossible. But it turns out that a kernel using 
such features can be defined and calculated in a very efficient way by using dynamic 
progamming techniques. 

We derive the kernel by starting from the features and working out their inner 
product. In this case there is no need to prove that it satisfies Mercer's conditions 
(symmetry and positive semi-definiteness) since they will follow automatically from 
its definition as an inner product. This kernel is based on work [11, 4] mostly mo­
tivated by bioinformatics applications. It maps strings to a feature vector indexed 
by all k tuples of characters. A k-tuple will have a non-zero entry if it occurs as a 
subsequence anywhere (not necessarily contiguously) in the string. The weighting 
of the feature will be the sum over the occurrences of the k-tuple of a decaying 
factor of the length of the occurrence. 

Definition 1 (String subsequence kernel) Let ~ be a finite alphabet. A string is a 
finite sequence of characters from~, including the empty sequence. For strings s, t, 
we denote by I s I the length of the string s = Sl .•. sl s I, and by st the string obtained 
by concatenating the strings sand t. The string sri : j] is the substring Si ••• Sj of 
s. We say that u is a subsequence of s, if there exist indices i = (i l , ... ,ilul)' with 
1 :S i l < ... < i 1ul :S lsi, such that Uj = S i j' for j = 1, ... ,lui, 01' u = sri] for short. 
The length l(i) of the subsequence in s is ilul - i l + 1. We denote by ~n the set of 
all finite strings of length n, and by~· the set of all strings 

DO 

(1) 

We now define feature spaces Fn = lR 1: n
• The feature mapping rp for a string s is 

given by defining the u coordinate rpu (s) for each u E ~n. We define 

rpu(s) = L ).l(i) , (2) 
i :u = s [il 



for some ..\ < 1. These features measure the number of occurrences of subsequences 
in the string-s weighting them according to their lengths. Hence, the inner product of 
the feature vectors for two strings sand t give a sum over all common subsequences 
weighted according to their frequency of occurrence and lengths 

L (<I>u(s) . <l>u(t)) = L L ..\l(i) L ..\l(j) 

uEEn uEEn i:u= s [iJ j :u = t liJ 

L L L ..\l(i)+l(j). 

uEEn i :u = s [iJ j :u=t liJ 

In order to derive an effective procedure for computing such kernel, we introduce 
an additional function which will aid in defining a recursive computation for this 
kernel. Let 

KHs, t) L L L ..\l s l+ltl- i ,-j,+2, 
uEE' i: u = s [iJj :u = t liJ 

1, ... , n -1, 

that is counting the length to the end of the strings sand t instead of just l(i) and 
l(j). We can now define a recursive computation for K: and hence compute K n , 

Definition 2 Recursive computation of the subsequence kernel. 

Kb(s, t) 1, for all s, t, 

K:(s,t) 0, if min(lsl, It l) < i, 
K;(s,t) 0, if min(lsl, It l) < i, 

KHsx, t) ..\K:(s, t) + L KL1(S, t[l : j - 1])..\ltl-1+2, 

j :tj=X 

i = 1, .. . ,n - 1, 

Kn(s,t)+ L K~_1(s,t[1:j-1])..\2. 
j:tj = x 

The correctness of this recursion follows from observing how the length of the strings 
has increased, incurring a factor of ..\ for each extra character, until the full length 
of n characters has been attained. If we wished to compute Kn(s, t) for a range 
of values of n, we would simply perform the computation of K:(s, t) up to one less 
than the largest n required, and then apply the last recursion for each Kn (s, t) 
that is needed using the stored values of K:(s, t). We can of course create a kernel 
K (s, t) that combines the different Kn (s, t) giving different (positive) weightings for 
each n. Once we have create such a kernel it is natural to normalise to remove any 
bias introduced by document length. We can produce this effect by normalising 
the feature vectors in the feature space. Hence, we create a new embedding 1>(s) = 
JJ.!l h· h· . h k I 11 1>(s )ll' w 1C glVes rIse to t e erne 

/«(s, t) /. .) / <I>(s) <I>(t) ) 
\ <I>(s) . <I>(t) = \ 1I<I>(s)11 . 1I <I>(t) 11 

1 K(s,t) 
1I<I>(s)IIII<I>(t)11 (<I>(s) . <I>(t)) = )K(s, s)K(t, t) 

The normalised kernel introduced above was implemented using the recursive for­
mulas described above. The next section gives some more details of the algorithmics 
and this is followed by a section describing the results of applying the kernel in a 
Support Vector Machine for text classification. 



3 Algorithmics 

In this section we describe how special design techniques provide a significant speed­
up of the procedure, by both accelerating the kernel evaluations and reducing their 
number. 

We used a simple gradient based implementation of SVMs (see [3]) with a fixed 
threshold. In order to deal with large datasets, we used a form of chunking: begin­
ning with a very small subset of the data and gradually building up the size of the 
training set, while ensuring that only points which failed to meet margin 1 on the 
current hypothesis were included in the next chunk. 

Since each evaluation of the kernel function requires not neglect able computational 
resources, we designed the system so to only calculate those entries of the kernel 
matrix that are actually required by the training algorithm. This can significantly 
reduce the training time, since only a relatively small part of the kernel matrix is 
actually used by our implementation of SVM. 

Special care in the implementation of the kernel described in Definition 1 can signif­
icantly speed-up its evaluation. As can be seen from the description of the recursion 
in Definition 2, its computation takes time proportional to n I s Iii 12, as the outer­
most recursion is over the sequence length and for each length and each additional 
character in sand i a sum over the sequence i must be evaluated. 

The complexity of the computation can be reduced to 0 (n I s Iii I), by first evaluating 

K;'(sx, i) = L Kf_l(s, i[l : j - 1]).xltl-H2 
j:tj = x 

and observing that we can then evaluate KI(s, i) with the O(lsllil) recursion, 

KI(sx, i) = .xKi(s, i) + KI'(sx, i). 

Now observe that Ki'(sx, iu) = .x1uIKI'{sx, i), provided x does not occur in u, while 

K:'(sx, ix) = .x (Kf'( sx, i) + .xKf_l (s, i)) . 

These observations together give an O( lsl lt l) recursion for computing K:'(s, t). 
Hence, we can evaluate the overall kernel in O(n lslltl) time. 

4 Experimental Results 

Our aim was to test the efficacy of this new approach to feature extraction for text 
categorization, and to compare with a state-of-the-art system such as the one used 
in [6]. Expecially, we wanted to see how the performance is affected by the tunable 
parameter k (we have used values 3, 5 and 6). As expected, using longer substrings 
in the comparison of two documents gives an improved performance. 

We used the same dataset as that reported in [6], namely the Reuters-21578 [7], 
as well as the Medline doucment collection of 1033 document abstracts from the 
National Library of Medicine. We performed all of our experiments on a subset of 
four categories, 'earn', 'acq', 'crude', and 'corn' . 

A confusion matrix can be used to summarize the performance of the classifier 
(number of true/false positives/negatives): 

P N 
P TP FP 
N FN TN 



We define preCISIOn: P = �T�:�~�P� and recall:R = �T�:�~�N�.� We then define the 
quantitiy F1 = �;�,�~�~� to measure the performance of the classifier. 

We applied the two different kernels to a subset of Reuters of 380 training examples 
and 90 test examples. The only difference in the experiments was the kernel used. 
The splits of the data were had the following sizes and numbers of positive examples 
in training and test sets: numbers of positive examples in training (testing) set out 
of 370 (90): earn 152 (40); 114 (25); 76 (15); 38 (10) in the Reuters database. 

The preliminary experiment used different values of k, in order to identify the 
optimal one, with the category 'earn'. The follwing experiments all used a sequence 
length of 5 for the string subsequences kernel. We set A = 0.5. The results obtained 
are shown in the following where the precision, recall and F1 values are shown for 
both kernels. 

F1 Precision Recall # SV 
3 S-K 0.925 0.981 0.878 138 
5 S-K 0.936 0.992 0.888 237 
6 S-K 0.936 0.992 0.888 268 
W-K 0.925 0.989 0.867 250 

Table 1: F1, Precision, Recall and number of Support Vectors for top reuter category 
earn averaged over 10 splits (n S-K == string kernel oflength n, W-K == word kernel 

5 S-K kernel W-K kernel 
F1 Precis. Recall #SV F1 Precis. Recall # SV 

earn 0.936 0.992 0.888 237 0.925 0.989 0.867 250 
acq 0.867 0.914 0.828 269 0.802 0.843 0.7680 276 
crude 0.936 0.979 0.90 262 0.904 0.91 0.907 262 
corn 0.779 0.886 0.7 231 0.762 0.833 0.71 264 

Table 2: Precision, Recall and F1 numbers for 4 categories for the two kernels: word 
kernel (W-K) and subsequences kernel (5 S-K) 

The results are better in one category, similar or slightly better for the other cate­
gories. They certainly indicate that the new kernel can outperform the more clas­
sical approach, but equally the performance is not reliably better. The last table 
shows the results obtained for two categories in medLine data, numbers 20 and 23. 

Query Train/Test 3 S-K(#SV) 5 S-K(#SV) 6 S-K(#SV) W-K(#SV) 
#20 24/15 0.20 (101) 0.637 (295) 0.75 (386) 0.235 (598) 
#23 22/15 0.534 (107) 0.409 (302) 0.75 (382) 0.636 (618) 

Table 3: F1 and number of Support Vectors for top two Medline queries 

5 Conclusions 

The paper has presented a novel kernel for text analysis, and tested it on a catego­
rization task, which relies on evaluating an inner product in a very high dimensional 
feature space. For a given sequence length k (k = 5 was used in the experiments 
reported) the features are indexed by all strings of length k. Direct computation of 




