
Text Classification using String Kernels

HUlna Lodhi John Shawe-Taylor N ello Cristianini

Chris Watkins
Department of Computer Science Royal Holloway, University of London

Egham, Surrey TW20 OEX, UK
{huma, john, nello, chrisw}Cdcs.rhbnc.ac.uk

Abstract

We introduce a novel kernel for comparing two text documents.
The kernel is an inner product in the feature space consisting of
all subsequences of length k. A subsequence is any ordered se
quence of k characters occurring in the text though not necessarily
contiguously. The subsequences are weighted by an exponentially
decaying factor of their full length in the text, hence emphasising
those occurrences which are close to contiguous. A direct compu
tation of this feature vector would involve a prohibitive amount of
computation even for modest values of k, since the dimension of
the feature space grows exponentially with k. The paper describes
how despite this fact the inner product can be efficiently evaluated
by a dynamic programming technique. A preliminary experimental
comparison of the performance of the kernel compared with a stan
dard word feature space kernel [6] is made showing encouraging
results.

1 Introduction

Standard learning systems (like neural networks or decision trees) operate on in
put data after they have been transformed into feature vectors XI, ••• , Xl E X from
an n dimensional space. There are cases, however, where the input data can not
be readily described by explicit feature vectors: for example biosequences, images,
graphs and text documents. For such datasets, the construction of a feature extrac
tion module can be as complex and expensive as solving the entire problem. An
effective alternative to explicit feature extraction is provided by kernel methods.

Kernel-based learning methods use an implicit mapping ofthe input data into a high
dimensional feature space defined by a kernel function, i.e. a function returning the
inner product between the images of two data points in the feature space. The
learning then takes place in the feature space, provided the learning algorithm can
be entirely rewritten so that the data points only appear inside dot products with
other data points.

Several linear algorithms can be formulated in this way, for clustering, classification
and regression. The most typical example of kernel-based systems is the Support

Vector Machine (SVM) [10, 3], that implements linear classification.

One interesting property of kernel-based systems is that, once a valid kernel function
has been selected, one can practically work in spaces of any dimensionality with
out paying any computational cost, since the feature mapping is never effectively
performed. In fact, one does not even need to know what features are being used.
In this paper we examine the use of a kernel method based on string alignment for
text categorization problems.

A standard approach [5] to text categorisation makes use of the so-called bag of
words (BOW) representation, mapping a document to a bag (i.e. a set that counts
repeated elements), hence losing all the word order information and only retaining
the frequency of the terms in the document. This is usually accompanied by the
removal of non-informative words (stop words) and by the replacing of words by
their stems, so losing inflection information. This simple technique has recently been
used very successfully in supervised learning tasks with Support Vector Machines
(SVM) [5].

In this paper we propose a radically different approach, that considers documents
simply as symbol sequences, and makes use of specific kernels. The approach is
entirely subsymbolic, in the sense that it considers the document just like a unique
long sequence, and still it is capable to capture topic information. We build on recent
advances [11, 4] that demonstrated how to build kernels over general structures
like sequences. The most remarkable property of such methods is that they map
documents to vectors without explicitly representing them, by means of sequence
alignment techniques. A dynamic programming technique makes the computation
of the kernels very efficient (linear in the documents length).

It is surprising that such a radical strategy, only extracting allignment information,
delivers positive results in topic classification, comparable with the performance
of problem-specific strategies: it seems that in some sense the semantic of the
document can be at least partly captured by the presence of certain substrings of
symbols.

Support Vector Machines [3] are linear classifiers in a kernel defined feature space.
The kernel is a function which returns the dot product of the feature vectors ¢(x)
and ¢(X') of two inputs x and x' K(x, x') = ¢(x)T ¢(X'). Choosing very high dimen
sional feature spaces ensures that the required functionality can be obtained using
linear classifiers. The computational difficulties of working in such feature spaces
is avoided by using a dual representation of the linear functions in terms of the
training set S = {(Xl, Y1) ,(X2, Y2), ... , (xm, Ym)},

m

f(x) = LCkiYiK(X, Xi) - b.
;=1

The danger of overfitting by resorting to such a high dimensional space is averted
by maximising the margin or a related soft version of this criterion, a strategy that
has been shown to ensure good generalisation despite the high dimensionality [9,8].

2 A Kernel for Text Sequences

In this section we describe a kernel between two text documents. The idea is to
compare them by means of the substrings they contain: the more substrings in
common, the more similar they are. An important part is that such substrings do
not need to be contiguous, and the degree of contiguity of one such substring in a
document determines how much weight it will have in the comparison.

For example: the substring 'c-a-r' is present both in the word 'card' and in the
word ' custard', but with different weighting. For each such substring there is a
dimension of the feature space, and the value of such coordinate depends on how
frequently and how compactly such string is embedded in the text. In order to deal
with non-contiguous substrings, it is necessary to introduce a decay factor). E (0,1)
that can be used to weight the presence of a certain feature in a text (see Definition
1 for more details).

EXaIllple. Consider the words cat, car, bat, bar. If we consider only k = 2, we
obtain an 8-dimensional feature space, where the words are mapped as follows:

c-a c-t a-t b-a b-t c-r a-r b-r
rp(cat)).2).3).2 0 0 0 0 0
rp(car)).2 0 0 0 0).3).2 0
rp(bat) 0 0).2).2).3 0 0 0
rp(bar) 0 0 0).2 0 0).2).3

Hence, the unnormalized kernel between car and cat is K(car,cat) =).4, wherease
the normalized version is obtained as follows: K(car,car) = K(cat,cat) = 2).4 +).6

and hence IC(car,cat) =).4/(2).4 +).6) = 1/(2 +).2). Note that in general the
document will contain more than one word, but the mapping for the whole document
is into one feature space. Punctuation is ignored, but spaces are retained.

However, for interesting substring sizes (eg > 4) direct computation of all the rele
vant features would be impractical even for moderately sized texts and hence explicit
use of such representation would be impossible. But it turns out that a kernel using
such features can be defined and calculated in a very efficient way by using dynamic
progamming techniques.

We derive the kernel by starting from the features and working out their inner
product. In this case there is no need to prove that it satisfies Mercer's conditions
(symmetry and positive semi-definiteness) since they will follow automatically from
its definition as an inner product. This kernel is based on work [11, 4] mostly mo
tivated by bioinformatics applications. It maps strings to a feature vector indexed
by all k tuples of characters. A k-tuple will have a non-zero entry if it occurs as a
subsequence anywhere (not necessarily contiguously) in the string. The weighting
of the feature will be the sum over the occurrences of the k-tuple of a decaying
factor of the length of the occurrence.

Definition 1 (String subsequence kernel) Let ~ be a finite alphabet. A string is a
finite sequence of characters from~, including the empty sequence. For strings s, t,
we denote by I s I the length of the string s = Sl .•. sl s I, and by st the string obtained
by concatenating the strings sand t. The string sri : j] is the substring Si ••• Sj of
s. We say that u is a subsequence of s, if there exist indices i = (i l , ... ,ilul)' with
1 :S i l < ... < i 1ul :S lsi, such that Uj = S i j' for j = 1, ... ,lui, 01' u = sri] for short.
The length l(i) of the subsequence in s is ilul - i l + 1. We denote by ~n the set of
all finite strings of length n, and by~· the set of all strings

DO

(1)

We now define feature spaces Fn = lR 1: n
• The feature mapping rp for a string s is

given by defining the u coordinate rpu (s) for each u E ~n. We define

rpu(s) = L).l(i) , (2)
i :u = s [il

for some ..\ < 1. These features measure the number of occurrences of subsequences
in the string-s weighting them according to their lengths. Hence, the inner product of
the feature vectors for two strings sand t give a sum over all common subsequences
weighted according to their frequency of occurrence and lengths

L (<I>u(s) . <l>u(t)) = L L ..\l(i) L ..\l(j)

uEEn uEEn i:u= s [iJ j :u = t liJ

L L L ..\l(i)+l(j).

uEEn i :u = s [iJ j :u=t liJ

In order to derive an effective procedure for computing such kernel, we introduce
an additional function which will aid in defining a recursive computation for this
kernel. Let

KHs, t) L L L ..\l s l+ltl- i ,-j,+2,
uEE' i: u = s [iJj :u = t liJ

1, ... , n -1,

that is counting the length to the end of the strings sand t instead of just l(i) and
l(j). We can now define a recursive computation for K: and hence compute K n ,

Definition 2 Recursive computation of the subsequence kernel.

Kb(s, t) 1, for all s, t,

K:(s,t) 0, if min(lsl, It l) < i,
K;(s,t) 0, if min(lsl, It l) < i,

KHsx, t) ..\K:(s, t) + L KL1(S, t[l : j - 1])..\ltl-1+2,

j :tj=X

i = 1, .. . ,n - 1,

Kn(s,t)+ L K~_1(s,t[1:j-1])..\2.
j:tj = x

The correctness of this recursion follows from observing how the length of the strings
has increased, incurring a factor of ..\ for each extra character, until the full length
of n characters has been attained. If we wished to compute Kn(s, t) for a range
of values of n, we would simply perform the computation of K:(s, t) up to one less
than the largest n required, and then apply the last recursion for each Kn (s, t)
that is needed using the stored values of K:(s, t). We can of course create a kernel
K (s, t) that combines the different Kn (s, t) giving different (positive) weightings for
each n. Once we have create such a kernel it is natural to normalise to remove any
bias introduced by document length. We can produce this effect by normalising
the feature vectors in the feature space. Hence, we create a new embedding 1>(s) =
JJ.!l h· h· . h k I 11 1>(s)ll' w 1C glVes rIse to t e erne

/«(s, t) /. .) / <I>(s) <I>(t))
\ <I>(s) . <I>(t) = \ 1I<I>(s)11 . 1I <I>(t) 11

1 K(s,t)
1I<I>(s)IIII<I>(t)11 (<I>(s) . <I>(t)) =)K(s, s)K(t, t)

The normalised kernel introduced above was implemented using the recursive for
mulas described above. The next section gives some more details of the algorithmics
and this is followed by a section describing the results of applying the kernel in a
Support Vector Machine for text classification.

3 Algorithmics

In this section we describe how special design techniques provide a significant speed
up of the procedure, by both accelerating the kernel evaluations and reducing their
number.

We used a simple gradient based implementation of SVMs (see [3]) with a fixed
threshold. In order to deal with large datasets, we used a form of chunking: begin
ning with a very small subset of the data and gradually building up the size of the
training set, while ensuring that only points which failed to meet margin 1 on the
current hypothesis were included in the next chunk.

Since each evaluation of the kernel function requires not neglect able computational
resources, we designed the system so to only calculate those entries of the kernel
matrix that are actually required by the training algorithm. This can significantly
reduce the training time, since only a relatively small part of the kernel matrix is
actually used by our implementation of SVM.

Special care in the implementation of the kernel described in Definition 1 can signif
icantly speed-up its evaluation. As can be seen from the description of the recursion
in Definition 2, its computation takes time proportional to n I s Iii 12, as the outer
most recursion is over the sequence length and for each length and each additional
character in sand i a sum over the sequence i must be evaluated.

The complexity of the computation can be reduced to 0 (n I s Iii I), by first evaluating

K;'(sx, i) = L Kf_l(s, i[l : j - 1]).xltl-H2
j:tj = x

and observing that we can then evaluate KI(s, i) with the O(lsllil) recursion,

KI(sx, i) = .xKi(s, i) + KI'(sx, i).

Now observe that Ki'(sx, iu) = .x1uIKI'{sx, i), provided x does not occur in u, while

K:'(sx, ix) = .x (Kf'(sx, i) + .xKf_l (s, i)) .

These observations together give an O(lsl lt l) recursion for computing K:'(s, t).
Hence, we can evaluate the overall kernel in O(n lslltl) time.

4 Experimental Results

Our aim was to test the efficacy of this new approach to feature extraction for text
categorization, and to compare with a state-of-the-art system such as the one used
in [6]. Expecially, we wanted to see how the performance is affected by the tunable
parameter k (we have used values 3, 5 and 6). As expected, using longer substrings
in the comparison of two documents gives an improved performance.

We used the same dataset as that reported in [6], namely the Reuters-21578 [7],
as well as the Medline doucment collection of 1033 document abstracts from the
National Library of Medicine. We performed all of our experiments on a subset of
four categories, 'earn', 'acq', 'crude', and 'corn' .

A confusion matrix can be used to summarize the performance of the classifier
(number of true/false positives/negatives):

P N
P TP FP
N FN TN

We define preCISIOn: P = �T�:�~�P� and recall:R = �T�:�~�N�.� We then define the
quantitiy F1 = �;�,�~�~� to measure the performance of the classifier.

We applied the two different kernels to a subset of Reuters of 380 training examples
and 90 test examples. The only difference in the experiments was the kernel used.
The splits of the data were had the following sizes and numbers of positive examples
in training and test sets: numbers of positive examples in training (testing) set out
of 370 (90): earn 152 (40); 114 (25); 76 (15); 38 (10) in the Reuters database.

The preliminary experiment used different values of k, in order to identify the
optimal one, with the category 'earn'. The follwing experiments all used a sequence
length of 5 for the string subsequences kernel. We set A = 0.5. The results obtained
are shown in the following where the precision, recall and F1 values are shown for
both kernels.

F1 Precision Recall # SV
3 S-K 0.925 0.981 0.878 138
5 S-K 0.936 0.992 0.888 237
6 S-K 0.936 0.992 0.888 268
W-K 0.925 0.989 0.867 250

Table 1: F1, Precision, Recall and number of Support Vectors for top reuter category
earn averaged over 10 splits (n S-K == string kernel oflength n, W-K == word kernel

5 S-K kernel W-K kernel
F1 Precis. Recall #SV F1 Precis. Recall # SV

earn 0.936 0.992 0.888 237 0.925 0.989 0.867 250
acq 0.867 0.914 0.828 269 0.802 0.843 0.7680 276
crude 0.936 0.979 0.90 262 0.904 0.91 0.907 262
corn 0.779 0.886 0.7 231 0.762 0.833 0.71 264

Table 2: Precision, Recall and F1 numbers for 4 categories for the two kernels: word
kernel (W-K) and subsequences kernel (5 S-K)

The results are better in one category, similar or slightly better for the other cate
gories. They certainly indicate that the new kernel can outperform the more clas
sical approach, but equally the performance is not reliably better. The last table
shows the results obtained for two categories in medLine data, numbers 20 and 23.

Query Train/Test 3 S-K(#SV) 5 S-K(#SV) 6 S-K(#SV) W-K(#SV)
#20 24/15 0.20 (101) 0.637 (295) 0.75 (386) 0.235 (598)
#23 22/15 0.534 (107) 0.409 (302) 0.75 (382) 0.636 (618)

Table 3: F1 and number of Support Vectors for top two Medline queries

5 Conclusions

The paper has presented a novel kernel for text analysis, and tested it on a catego
rization task, which relies on evaluating an inner product in a very high dimensional
feature space. For a given sequence length k (k = 5 was used in the experiments
reported) the features are indexed by all strings of length k. Direct computation of

