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Abstract 

The problem of reinforcement learning in large factored Markov decision 
processes is explored. The Q-value of a state-action pair is approximated 
by the free energy of a product of experts network. Network parameters 
are learned on-line using a modified SARSA algorithm which minimizes 
the inconsistency of the Q-values of consecutive state-action pairs. Ac
tions are chosen based on the current value estimates by fixing the current 
state and sampling actions from the network using Gibbs sampling. The 
algorithm is tested on a co-operative multi-agent task. The product of 
experts model is found to perform comparably to table-based Q-Iearning 
for small instances of the task, and continues to perform well when the 
problem becomes too large for a table-based representation. 

1 Introduction 

Online Reinforcement Learning (RL) algorithms try to find a policy which maximizes the 
expected time-discounted reward provided by the environment. They do this by performing 
sample backups to learn a value function over states or state-action pairs [1]. If the decision 
problem is Markov in the observed states, then the optimal value function over state-action 
pairs (the Q-function) yields all of the information required to find the optimal policy for the 
decision problem. For example, when the Q-function is represented as a table, the optimal 
action for a given state can be found simply by searching the row of the table corresponding 
to that state. 

1.1 Factored Markov Decision Processes 

In many cases the dimensionality of the problem makes a table representation impractical, 
so a more compact representation that makes use of the structure inherent in the problem is 
required. In a co-operative multi-agent system, for example, it is natural to represent both 
the state and action as sets of variables (one for each agent). We expect that the mapping 
from the combined states of all the agents to the combined actions of all the agents is not 
arbitrary: Given an individual agent's state, that agent's action might be largely independent 
of the other agents' exact states and actions, at least for some regions of the combined state 
space. We expect that a facto red representation of the Q-value function will be appropriate 



for two reasons: The original representation of the combined states and combined actions 
is factored, and the ways in which the optimal actions of one agent are dependent on the 
states and actions of other agents might be well captured by a small number of "hidden" 
factors rather than the exponential number required to express arbitrary mappings. 

1.2 Actor-Critic Architectures 

If a non-linear function approximator is used to model the Q-function, then it is difficult 
and time consuming to extract the policy directly from the Q-function because a non-linear 
optimization must be solved for each action choice. One solution, called an actor-critic 
architecture, is to use a separate function approximator to model the policy (i.e. to approxi
mate the non-linear optimization) [2, 3]. This has the advantage of being fast, and allows us 
to explicitly learn a stochastic policy, which can be advantageous if the underlying problem 
is not strictly Markov [4]. However, a specific parameterized family of policies must be 
chosen a priori. 

Instead we present a method where the Q-value of a state-action pair is represented (up 
to an additive constant) by the negative free-energy, - F, of the state-action pair under a 
non-causal graphical model. The graphical model is a product of experts [5] which has two 
very useful properties: Given a state-action pair, the exact free energy is easily computed, 
and the derivative of this free energy W.r.t. each parameter of the network is also very 
simple. The model is trained to minimize the inconsistency between the free-energy of a 
state-action pair and the discounted free energy of the next state-action pair, taking into 
account the immediate reinforcement. After training, a good action for a given state can 
be found by clamping the state and drawing a sample of the action variables using Gibbs 
sampling [6]. Although finding optimal actions would still be difficult for large problems, 
selecting an action with a probability that is approximately proportional to exp( - F) can 
be done with a modest number of iterations of Gibbs sampling. 

1.3 Markov Decision Processes 

We will concentrate on finite, factored, Markov decision processes (factored MDPs), in 
which each state and action is represented as a set of discrete variables. Formally, a factored 
MDP consists of the set { {SO:}~=I' {A,8 }:=l, {s~ }~=l' P, Pr }, where: So: is the set of 
possible values for state variable 0:; A,8 is the set of possible values for action variable (3; 
s~ is the initial value for state variable 0:; P is a transition distribution P(st+llst, at); and 
Pr is a reward distribution P(rtlst,at,st+l). A state is an M-tuple and an action is an 
N-tuple. 

The goal of solving an MDP is to find a policy, which is a sequence of (possibly stochastic) 
mappings 7ft : Sl X S2 X ... X SM -+ Al X A2 X ... X AN which maximize the total 
expected reward received over the course of the task: 

(Rt) 1r' = (rt + '/'rt+1 + ... + ,/,T-trT) 1r' (1) 

where,/, is a discount factor and (-) 1r' denotes the expectation taken with respect to policy 
7ft. We will focus on the case when the policy is stationary: 7ft is identical for all t. 

2 Approximating Q-values with a Product of Experts 

As the number of state and action variables increases, a table representation quickly be
comes intractable. We represent the value of a state and action as the negative free-energy 
(up to a constant) under a product of experts model (see Figure lea»~. 

With a product of experts, the probability assigned to a state-action pair, (s, a) is just the 
(normalized) product of the probabilities assigned to (s, a) under each of the individual 
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Figure 1: a) The Boltzmann product of experts. The estimated Q-value (up to an additive 
constant) of a setting of the state and action units is found by holding these units fixed 
and computing the free energy of the network. Actions are selected by alternating between 
updating all of the hidden units in parallel and updating all of the action units in parallel, 
with the state units held constant. b) A multinomial state or action variable is represented 
by a set of "one-of-n" binary units in which exactly one is on. 

experts: 

II~=l Pk(S, al()k) 
p(s,al()l, ... ,()K) = " II (' 'I()) 

L.J(sl,al) k Pk S , a k 
(2) 

where {()1, ... , ()K} are parameters of the K experts and (s', a') indexes all possible state
action pairs. 

In the following, we will assume that there are an equal number of state and action variables 
(i.e. M = N); and that each state or action variable has the same arity (Va., (3, Isa I = IS,B I 
and IAa I = IA,Bi). These assumptions are appropriate, for example, when there is one state 
and action variable for each agent in a multi-agent task. Extension to the general case is 
straight forward . In the following, (3 will index agents. 

Many kinds of "experts" could be used while still retaining the useful properties of the 
PoE. We will focus on the case where each expert is a single binary sigmoid unit because 
it is particularly suited to the discrete tasks we consider here. Each agent's (multinomial) 
state or action is represented using a "one-of-N" set of binary units which are constrained 
so that exactly one of them is on. The product of experts is then a bipartite "Restricted 
Boltzmann Machine" [5]. We use S,Bi to denote agent (3's ith state and a,Bj to denote its jth 
action. We will denote the binary latent variables of the "experts" by hk (see Figure l(b)). 

For a state s = {S,Bi} and an action a = {a,Bj} ' the free energy is given by the expected 
energy given the posterior distribution of the hidden units minus the entropy of this poste
rior distribution. This is simple to compute because the hidden units are independent in the 
posterior distribution: 

F(s,a) 
K M (lSI IAI ) -t;]; ~(W,BikS,Bihk + b,BiS,B,) + ~(U,Bjka,Bjhk + b,Bja,BJ 

K K 

- L bkhk + L hk log hk + (1 - h k ) log (1 - h k ) - Cp (3) 
k=l k=l 



where W(3,k is the weight from the kth expert to binary state variable s(3,; U(3;k is the weight 
from the kth expert to binary action variable a(3;; bk , b(3, and b(3; are biases; and 

{ 
M (lSI IAI )} 

hk = a ]; t; W(3,k S(3,k + t; u(3;ka(3;k + bk (4) 

is the expected value of each expert given the data where a(x) = 1/1 + e- x denotes the 
logistic function. CF is an additive constant equal to the log of the partition function. The 
first two terms of (3) corresponds to an unnormalized negative log-likelihood, and the third 
to the negative entropy of the distribution over the hidden units given the data. The free 
energy can be computed tractably because inference is tractable in a product of experts: 
under the product model each expert is independent of the others given the data. We can 
efficiently compute the exact free energy of a state and action under the product model, up 
to an additive constant. The Q-function will be approximated by the negative free-energy 
(or goodness), without the constant: 

Q(s, a) :::::: -F(s, a) + CF (5) 

2.1 Learning the Parameters 

The parameters of the model must be adjusted so that the goodness of a state-action under 
the product model approximates its actual Q-value. This is done with a modified SARSA 
learning rule designed to minimize the Bellman error [7, 8]. If we consider a delta-rule 
update where the target for input (st, at) is rt + 'YQ(st+!, a t+!), then (for example) the 
update for W(3,k is given by: 

!1W(3,k ex: (rt+'YQ(st+l,at+!)-Q(st,at)) 8Q(st,at ) 
8 W(3ik 

(6) 

(7) 

The other weights and biases are updated similarly. Although there is no proof of conver
gence for this learning rule, it works well in practice even though it ignores the effect of 
changes in W(3ik on Q(st+l, a t +!). 

2.2 Sampling Actions 

Given a trained network and the current state st, we need to generate actions according 
to their goodness. We would like to select actions according to a Boltzmann exploration 
scheme in which the probability of selecting an action is proportional to eQ IT. This selec
tion scheme has the desirable property that it optimizes the trade-off between the expected 
payoff, Q, and the entropy of the selection distribution, where T is the relative importance 
of exploration versus exploitation. Fortunately, the additive constant, CF, does not need 
to be known in order to select actions in this way. It is sufficient to do alternating Gibbs 
sampling. We start with an arbitrary initial action represented on the action units. Holding 
the state units fixed we update all of the hidden units in parallel so that we get a sample 
from the posterior distribution over the hidden units given the state and the action. Then we 
update all of the action units in parallel so that we get a sample from the posterior distribu
tion over actions given the states of the hidden units. When updating the states of the action 
units, we use a "softmax" to enforce the one-of-N constraint within a set of binary units that 
represent mutually exclusive actions of the same agent. When the alternating Gibbs sam
pling reaches equilibrium it draws unbiased samples of actions according to their Q-value. 
For the networks we used, 50 Gibbs iterations appeared to be sufficient to come close to 
the equilibrium distribution. 



3 Experimental Results 

To test the algorithm we introduce a co-operative multi-agent task in which there are offen
sive players trying to reach an end-zone, and defensive players trying to block them (see 
Figure 2). 

end-zone 
blockers 

~ ~ 
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Figure 2: An example of the "blocker" 
task. Agents must get past the blockers 
to the end-zone. The blockers are pre
programmed with a strategy to stop them, 
but if they co-operate the blockers cannot 
stop them all simultaneously. 

The task is co-operative: As long as one agent reaches the end-zone, the "team" is re
warded. The team receives a reward of + 1 when an agent reaches the end-zone, and a 
reward of -1 otherwise. The blockers are pre-programmed with a fixed blocking strategy. 
Each agent occupies one square on the grid, and each blocker occupies three horizontally 
adjacent squares. An agent cannot move into a square occupied by a blocker or another 
agent. The task has non-wrap-around edge conditions on the east, west and south sides of 
the field, and the blockers and agents can move north, south, east or west. 

A product of experts (PoE) network with 4 hidden units was trained on a 5 x 4 blocker task 
with two agents and one blocker. The combined state consisted of three position variables 
(two agents and one blocker) which could take on integer values {I, ... , 20}. The combined 
action consisted of two action variables taking on values from {I, ... ,4}. 

The network was run twice, once for 60 000 combined actions and once for 400 000 com
bined actions, with a learning rate going from 0.1 to 0.01 linearly and temperature going 
from 1.0 to 0.01 exponentially over the course of training. Each trial was terminated after 
either the end-zone was reached, or 20 combined actions were taken, whichever occurred 
first. Each trial was initialized with the blocker placed randomly in the top row and the 
agents placed randomly in the bottom row. The same learning rate and temperature sched
ule were used to train a Q-Iearner with a table containing 128,000 elements (203 x 42), 

except that the Q-Iearner was allowed to train for 1 million combined actions. After train
ing each policy was run for 10,000 steps, and all rewards were totaled. The two algorithms 
were also compared to a hand-coded policy, where the agents first move to opposite sides 
of the field and then move to the end-zone. In this case, all of the algorithms performed 
comparably, and the POE network performing well even for a short training time. 

A PoE network with 16 hidden units was trained on a 4 x 7 blockers task with three agents 
and two blockers. Again, the input consisted of position variables for each blocker and 
agent, and and action variables for each agent. The network was trained for 400 000 com
bined actions, with the a learning rate from 0.01 to 0.001 and the same temperature sched
ule as the previous task. Each trial was terminated after either the end-zone was reached, or 
40 steps were taken, whichever occurred first. After training, the resultant policy was run 
for 10,000 steps and the rewards received were totaled. As the table representation would 
have over a billion elements (285 x 43 ), a table based Q-Iearner could not be trained for 
comparison. The hand-coded policy moved agents 1, 2 and 3 to the left, middle and right 
column respectively, and then moved all agents towards the end-zone. The PoE performed 
comparably to this hand-coded policy. The results for all experiments are summarized in 
Table 1. 



Table 1: Experimental Results 

Algorithm 

Random policy (5 x 4,2 agents, 1 blocker) 
hand-coded (5 x 4, 2 agents, 1 blocker) 
Q-Ieaming (5 x 4,2 agents, 1 blocker, 1000K steps) 
PoE (5 x 4, 2 agents, 1 blocker, 60K steps) 
PoE (5 x 4, 2 agents, 1 blocker, 400K steps) 
Random policy (4 x 7,3 agents, 2 blockers) 
hand-coded (4 x 7,3 agents, 2 blockers) 
PoE (4 x 7,3 agents, 2 blockers, 400K steps) 

4 Discussion 

Reward 

-9986 
-6782 
-6904 
-7303 
-6738 
-9486 
-7074 
-7631 

Each hidden unit in the product model implements a probabilistic constraint that captures 
one aspect of the relationship between combined states and combined actions in a good 
policy. In practice the hidden units tend to represent particular strategies that are relevant 
in particular parts of the combined state space. This suggests that the hidden units could 
be used for hierarchical or temporal learning. A reinforcement learner could, for exam
ple, learn the dynamics between hidden unit values (useful for POMDPs) and the rewards 
associated with hidden unit activations. 

Because the PoE network implicitly represents a joint probability distribution over state
action pairs, it can be queried in ways that are not normally possible for an actor network. 
Given any subset of state and action variables, the remainder can be sampled from the 
network using Gibbs sampling. This makes it easy to answer questions of the form: "How 
should agent 3 behave given fixed actions for agents 1 and 2?" or "I can see some of 
the state variables but not others. What values would I most like to see for the others?". 
Further, because there is an efficient unsupervised learning algorithm for PoE networks, an 
agent could improve its policy by watching another agent's actions and making them more 
probable under its own model. 

There are a number of related works, both in the fields of reinforcement learning and un
supervised learning. The SARSA algorithm is from [7, 8]. A delta-rule update similar to 
ours was explored by [9] for POMDPs and Q-Iearning. Factored MDPs and function ap
proximators have a long history in the adaptive control and RL literature (see for example 
[10]). 

Our method is also closely related to actor-critic methods [2,3]. Normally with an actor
critic method, the actor network can be viewed as a biased scheme for selecting actions 
according to the value assigned by the critic. The selection is biased by the choice of pa
rameterization. Our method of action selection is unbiased (if the Markov chain is allowed 
to converge). Further, the resultant policy can potentially be much more complicated than 
a typical parameterized actor network would allow. This is exactly the tradeoff explored in 
the graphical models literature between the use of Monte Carlo inference [11] and varia
tional approximations [12]. 

Our algorithm is also related to probability matching [13], in which good actions are made 
more probable under the model, and the temperature at which the probability is computed is 
slowly reduced over time in order to move from exploration to exploitation and avoid local 
minima. Unlike our algorithm, the probability matching algorithm used a parameterized 
distribution which was maximized using gradient descent, and it did not address temporal 
credit assignment. 




