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Abstract

We present a class of approximate inference algorithms for graphical
models of the QMR-DT type. We give convergence rates for these al-
gorithms and for the Jaakkola and Jordan (1999) algorithm, and verify
these theoretical predictions empirically. We also present empirical re-
sults on the difficult QMR-DT network problem, obtaining performance
of the new algorithms roughly comparable to the Jaakkola and Jordan
algorithm.

1 Introduction

The graphical models formalism provides an appealing framework for the design and anal-
ysis of network-based learning and inference systems. The formalism endows graphs with
a joint probability distribution and interprets most queries of interest as marginal or con-
ditional probabilities under this joint. For a fixed model one is generally interested in the
conditional probability of an output given an input (for prediction), or an input conditional
on the output (for diagnosis or control). During learning the focus is usually on the like-
lihood (a marginal probability), on the conditional probability of unobserved nodes given
observed nodes (e.g., for an EM or gradient-based algorithm), or on the conditional proba-
bility of the parameters given the observed data (in a Bayesian setting).

In all of these cases the key computational operation is that of marginalization. There are
several methods available for computing marginal probabilities in graphical models, most
of which involve some form of message-passing on the graph. Exact methods, while viable
in many interesting cases (involving sparse graphs), are infeasible in the dense graphs that
we consider in the current paper. A number of approximation methods have evolved to treat
such cases; these include search-based methods, loopy propagation, stochastic sampling,
and variational methods.

Variational methods, the focus of the current paper, have been applied successfully to a
number of large-scale inference problems. In particular, Jaakkola and Jordan (1999) de-
veloped a variational inference method for the QMR-DT network, a benchmark network
involving over 4,000 nodes (see below). The variational method provided accurate ap-
proximation to posterior probabilities within a second of computer time. For this difficult
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inference problem exact methods are entirely infeasible (see below), loopy propagation
does not converge to correct posteriors (Murphy, Weiss, & Jordan, 1999), and stochastic
sampling methods are slow and unreliable (Jaakkola & Jordan, 1999).

A significant step forward in the understanding of variational inference was made by Kearns
and Saul (1998), who used large deviation techniques to analyze the convergence rate of
a simplified variational inference algorithm. Imposing conditions on the magnitude of the
weights in the network, they established a O(+/log N/N) rate of convergence for the error
of their algorithm, where IV is the fan-in.

In the current paper we utilize techniques similar to those of Kearns and Saul to derive a
new set of variational inference algorithms with rates that are faster than O(y/log N/N).
Our techniques also allow us to analyze the convergence rate of the Jaakkola and Jordan
(1999) algorithm. We test these algorithms on an idealized problem and verify that our
analysis correctly predicts their rates of convergence. We then apply these algorithms to
the difficult the QMR-DT network problem.

2 Background

2.1 The QMR-DT network

The QMR-DT (Quick Medical Reference, Decision-Theoretic) network is a bipartite graph
with approximately 600 top-level nodes d; representing diseases and approximately 4000
lower-level nodes f; representing findings (observed symptoms). All nodes are binary-
valued. Each disease is given a prior probability P(d; = 1), obtained from archival data,
and each finding is parameterized as a “noisy-OR” model:

P(fi = 1]d) = 1 - e~ "0 2sen 0,

where m; is the set of parent diseases for finding f;, and where the parameters 6;; are
obtained from assessments by medical experts (see Shwe, et al., 1991).

Letting z; = 60 + > 0;;d;, we have the following expression for the likelihood!:
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where the sum is a sum across the approximately 25%° configurations of the diseases. Note
that the second product, a product over the negative findings, factorizes across the diseases
d;; these factors can be absorbed into the priors P(d;) and have no significant effect on the
complexity of inference. It is the positive findings which couple the diseases and prevent

the sum from being distributed across the product.

Generic exact algorithms such as the junction tree algorithm scale exponentially in the
size of the maximal clique in a moralized, triangulated graph. Jaakkola and Jordan (1999)
found cliques of more than 150 nodes in QMR-DT; this rules out the junction tree algo-
rithm. Heckerman (1989) discovered a factorization specific to QMR-DT that reduces the
complexity substantially; however the resulting algorithm still scales exponentially in the
number of positive findings and is only feasible for a small subset of the benchmark cases.

'In this expression, the factors P(d;) are the probabilities associated with the (parent-less) disease
nodes, the factors (1 — e™*¢) are the probabilities of the (child) finding nodes that are observed to be
in their positive state, and the factors e ~*¢ are the probabilities of the negative findings. The resulting
product is the joint probability P( f, d), which is marginalized to obtain the likelihood P(f).
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2.2 The Jaakkola and Jordan (JJ) algorithm

Jaakkola and Jordan (1999) proposed a variational algorithm for approximate inference in
the QMR-DT setting. Briefly, their approach is to make use of the following variational
inequality:
Lg% & e)uzi—c.',

where ¢; is a deterministic function of A;. This inequality holds for arbitrary values of
the free “variational parameter” A;. Substituting these variational upper bounds for the
probabilities of positive findings in Eq. (1), one obtains a factorizable upper bound on the
likelihood. Because of the factorizability, the sum across diseases can be distributed across
the joint probability, yielding a product of sums rather than a sum of products. One then
minimizes the resulting expression with respect to the variational parameters to obtain the
tightest possible variational bound.

2.3 The Kearns and Saul (KS) algorithm

A simplified variational algorithm was proposed by Kearns and Saul (1998), whose main
goal was the theoretical analysis of the rates of convergence for variational algorithms. In
their approach, the local conditional probability for the finding f; is approximated by its
value at a point a small distance ¢; above or below (depending on whether upper or lower
bounds are desired) the mean input E[z;]. This yields a variational algorithm in which the
values ¢; are the variational parameters to be optimized. Under the assumption that the
weights 8;; are bounded in magnitude by 7 /N, where 7 is a constant and NV is the number
of parent (“disease”) nodes, Kearns and Saul showed that the error in likelihood for their

algorithm converges at a rate of O(4/log N/N).

3 Algorithms based on local expansions

Inspired by Kearns and Saul (1998), we describe the design of approximation algorithms
for QMR-DT obtained by expansions around the mean input to the finding nodes. Rather
than using point approximations as in the Kearns-Saul (KS) algorithm, we make use of
Taylor expansions. (See also Plefka (1982), and Barber and van de Laar (1999) for other
perturbational techniques.)

Consider a generalized QMR-DT architecture in which the noisy-OR model is replaced by a
general function 9(z) : R — [0, 1] having uniformly bounded derivatives, i.e., [ (z)| <
B;. Define F(z1,. .., zx) = [T, (#(2:))" TII<, (1 = (1)) ¥ so that the likelihood
can be written as

P(f) = Bz [F (21, .- 2] )
Also define p; = E[2;] = 60 + Ej:] 6, P(d; =1).
A simple mean-field-like approximation can be obtained by evaluating F' at the mean values
Bt

P(f) = F(p,- - ., pk). ®3)

We refer to this approximation as “MF(0).”
Expanding the function F to second order, and defining €; = 2; — pu;, we have:
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where the subscripts on F’ represent derivatives. Dropping the remainder term and bringing
the expectation inside, we have the “MF(2)” approximation:

— 1 E K —
P(f)~ F(K)+5 > ) Fii(K)E[e; €3]
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More generally, we obtain a “MF(i)” approximation by carrying out a Taylor expansion to
i-th order.

3.1 Analysis

In this section, we give two theorems establishing convergence rates for the MF(i) family
of algorithms and for the Jaakkola and Jordan algorithm. As in Kearns and Saul (1998),
our results are obtained under the assumption that the weights are of magnitude at most
O(1/N) (recall that N is the number of disease nodes). For large IV, this assumption of
“weak interactions” implies that each z; will be close to its mean value with high probability
(by the law of large numbers), and thereby gives justification to the use of local expansions
for the probabilities of the findings.

Due to space constraints, the detailed proofs of the theorems given in this section are de-
ferred to the long version of this paper, and we will instead only sketch the intuitions for
the proofs here.

Theorem 1 Let K (the number of findings) be fixed, and suppose |6;;| < % for all i, j for
some fixed constant T. Then the absolute error of the MF(k) approximation is O (W%W?)
for k odd and O (mwl.‘,_,_—”-) for k even.

Proof intuition. First consider the case of odd k. Since |6;;| < %, the quantity €; = z; —
pi = 3 ; 0i5(d;j — E[d;]) is like an average of N random variables, and hence has standard
deviation on the order 1/ V/N. Since MF(k) matches F up to the k-th order derivatives, we
find that when we take a Taylor expansion of MF(k)’s error, the leading non-zero term is the
k + 1-st order term, which contains quantities such as ef"'l. Now because ¢; has standard
deviation on the order 1/+/N, it is unsurprising that E[¢¥*1] is on the order 1/N (¥+1)/2,
which gives the error of MF(k) for odd k.

For k even, the leading non-zero term in the Taylor expansion of the error is a k + 1-st order
term with quantities such as ef“. But if we think of €; as converging (via a central limit
theorem effect) to a symmetric distribution, then since symmetric distributions have small
odd central moments, E[e¥*!] would be small. This means that for k even, we may look to
the order k + 2 term for the error, which leads to MF(k) having the the same big-O error as
MF(k + 1). Note this is also consistent with how MF(0) and MF(1) always give the same
estimates and hence have the same absolute error. O

A theorem may also be proved for the convergence rate of the Jaakkola and Jordan (JJ)
algorithm. For simplicity, we state it here only for noisy-OR networks.? A closely related
result also holds for sigmoid networks with suitably modified assumptions; see the full

paper.

Theorem 2 Let K be fixed, and suppose 1s(z) = 1—e ™% is the noisy-OR function. Suppose
further that 0 < 0;; < & for all i, j for some fixed constant T, and that i; > pimin for all
i, for some fixed piin > 0. Then the absolute error of the JJ approximation is O (—lﬁ]

Note in any case that JJ can be applied only when v is log-concave, such as in noisy-OR networks
(where incidentally all weights are non-negative).












