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Abstract 

We present a class of approximate inference algorithms for graphical 
models of the QMR-DT type. We give convergence rates for these al­
gorithms and for the Jaakkola and Jordan (1999) algorithm, and verify 
these theoretical predictions empirically. We also present empirical re­
sults on the difficult QMR-DT network problem, obtaining performance 
of the new algorithms roughly comparable to the Jaakkola and Jordan 
algorithm. 

1 Introduction 

The graphical models formalism provides an appealing framework for the design and anal­
ysis of network-based learning and inference systems. The formalism endows graphs with 
a joint probability distribution and interprets most queries of interest as marginal or con­
ditional probabilities under this joint. For a fixed model one is generally interested in the 
conditional probability of an output given an input (for prediction), or an input conditional 
on the output (for diagnosis or control). During learning the focus is usually on the like­
lihood (a marginal probability), on the conditional probability of unobserved nodes given 
observed nodes (e.g., for an EM or gradient-based algorithm), or on the conditional proba­
bility of the parameters given the observed data (in a Bayesian setting). 

In all of these cases the key computational operation is that of marginalization. There are 
several methods available for computing marginal probabilities in graphical models, most 
of which involve some form of message-passing on the graph. Exact methods, while viable 
in many interesting cases (involving sparse graphs), are infeasible in the dense graphs that 
we consider in the current paper. A number of approximation methods have evolved to treat 
such cases; these include search-based methods, loopy propagation, stochastic sampling, 
and variational methods. 

Variational methods, the focus of the current paper, have been applied successfully to a 
number of large-scale inference problems. In particular, Jaakkola and Jordan (1999) de­
veloped a variational inference method for the QMR-DT network, a benchmark network 
involving over 4,000 nodes (see below). The variational method provided accurate ap­
proximation to posterior probabilities within a second of computer time. For this difficult 
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inference problem exact methods are entirely infeasible (see below), loopy propagation 
does not converge to correct posteriors (Murphy, Weiss, & Jordan, 1999), and stochastic 
sampling methods are slow and unreliable (Jaakkola & Jordan, 1999). 

A significant step forward in the understanding of variational inference was made by Kearns 
and Saul (1998), who used large deviation techniques to analyze the convergence rate of 
a simplified variational inference algorithm. Imposing conditions on the magnitude of the 
weights in the network, they established a 0 ( Jlog N / N) rate of convergence for the error 
of their algorithm, where N is the fan-in. 

In the current paper we utilize techniques similar to those of Kearns and Saul to derive a 
new set of variational inference algorithms with rates that are faster than 0 ( Jlog N / N). 
Our techniques also allow us to analyze the convergence rate of the Jaakkola and Jordan 
(1999) algorithm. We test these algorithms on an idealized problem and verify that our 
analysis correctly predicts their rates of convergence. We then apply these algorithms to 
the difficult the QMR-DT network problem. 

2 Background 

2.1 The QMR-DT network 

The QMR-DT (Quick Medical Reference, Decision-Theoretic) network is a bipartite graph 
with approximately 600 top-level nodes di representing diseases and approximately 4000 
lower-level nodes Ii representing findings (observed symptoms). All nodes are binary­
valued. Each disease is given a prior probability P(di = 1), obtained from archival data, 
and each finding is parameterized as a "noisy-OR" model: 

P(h = lid) = 1- e-(lio-L:jE"i (lijd j , 

where 7T'i is the set of parent diseases for finding h and where the parameters Oij are 
obtained from assessments by medical experts (see Shwe, et aI., 1991). 

Letting Zi = OiQ + I:jE1l'i Oijdj , we have the following expression for the likelihood I : 

(1) 

where the sum is a sum across the approximately 2600 configurations of the diseases. Note 
that the second product, a product over the negative findings, factorizes across the diseases 
dj ; these factors can be absorbed into the priors P (dj ) and have no significant effect on the 
complexity of inference. It is the positive findings which couple the diseases and prevent 
the sum from being distributed across the product. 

Generic exact algorithms such as the junction tree algorithm scale exponentially in the 
size of the maximal clique in a moralized, triangulated graph. Jaakkola and Jordan (1999) 
found cliques of more than 150 nodes in QMR-DT; this rules out the junction tree algo­
rithm. Heckerman (1989) discovered a factorization specific to QMR-DT that reduces the 
complexity substantially; however the resulting algorithm still scales exponentially in the 
number of positive findings and is only feasible for a small subset of the benchmark cases. 

I In this expression, the factors P( dj) are the probabilities associated with the (parent-less) disease 
nodes, the factors (1 - e - Zi) are the probabilities of the (child) finding nodes that are observed to be 
in their positive state, and the factors e -Zi are the probabilities of the negative findings. The resulting 
product is the joint probability P(f, d), which is marginalized to obtain the likelihood P(f). 
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2.2 The Jaakkola and Jordan (JJ) algorithm 

Jaakkola and Jordan (1999) proposed a variational algorithm for approximate inference in 
the QMR-DT setting. Briefly, their approach is to make use of the following variational 
inequality: 

where Ci is a deterministic function of Ai. This inequality holds for arbitrary values of 
the free "variational parameter" Ai. Substituting these variational upper bounds for the 
probabilities of positive findings in Eq. (1), one obtains a factorizable upper bound on the 
likelihood. Because of the factorizability, the sum across diseases can be distributed across 
the joint probability, yielding a product of sums rather than a sum of products. One then 
minimizes the resulting expression with respect to the variational parameters to obtain the 
tightest possible variational bound. 

2.3 The Kearns and Saul (KS) algorithm 

A simplified variational algorithm was proposed by Kearns and Saul (1998), whose main 
goal was the theoretical analysis of the rates of convergence for variational algorithms. In 
their approach, the local conditional probability for the finding Ii is approximated by its 
value at a point a small distance Ci above or below (depending on whether upper or lower 
bounds are desired) the mean input E[Zi]. This yields a variational algorithm in which the 
values Ci are the variational parameters to be optimized. Under the assumption that the 
weights Oij are bounded in magnitude by T / N, where T is a constant and N is the number 
of parent ("disease") nodes, Kearns and Saul showed that the error in likelihood for their 
algorithm converges at a rate of O( Vlog N / N). 

3 Algorithms based on local expansions 

Inspired by Kearns and Saul (1998), we describe the design of approximation algorithms 
for QMR-DT obtained by expansions around the mean input to the finding nodes. Rather 
than using point approximations as in the Kearns-Saul (KS) algorithm, we make use of 
Taylor expansions. (See also Plefka (1982), and Barber and van de Laar (1999) for other 
perturbational techniques.) 

Consider a generalized QMR-DT architecture in which the noisy-OR model is replaced by a 
general function 'IjJ( z) : R -t [0, 1] having uniformly bounded derivatives, i.e., \'IjJ(i) (z) \ :::; 
B i . Define F(Zl, . .. , ZK) = rr~l ('IjJ(zi))fi rr~l (1 - 'IjJ(Zd)l-fi so that the likelihood 
can be written as 

P(f) = E{z;}[F(Zl"" ,ZK)]. (2) 

Also define /-ti = E[Zi] = Ow + 2:7=1 OijP(dj = 1). 

A simple mean-field-like approximation can be obtained by evaluating F at the mean values 

P(f) ~ F(/-t1, ... ,/-tK). (3) 
We refer to this approximation as "MF(O)." 

Expanding the function F to second order, and defining (i = Zi - /-ti, we have: 

r K 1 K K 
P(f) E{fi} F(jl) + L Fi1 (J1)(i 1 + 21 .L L Fid2 (J1)Eh (i2 + 

L 11 =1 11 =112=1 

(4) 
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where the subscripts on F represent derivatives. Dropping the remainder term and bringing 
the expectation inside, we have the "MF(2)" approximation: 

1 K K 

P(f) ~ F(il) + 2 L L Fili2(Jt)E[EilEi2] 

i 1 =1 i2=1 

More generally, we obtain a "MF(i)" approximation by carrying out a Taylor expansion to 
i-th order. 

3.1 Analysis 

In this section, we give two theorems establishing convergence rates for the MF( i) family 
of algorithms and for the Jaakkola and Jordan algorithm. As in Kearns and Saul (1998), 
our results are obtained under the assumption that the weights are of magnitude at most 
O(lIN) (recall that N is the number of disease nodes). For large N, this assumption of 
"weak interactions" implies that each Zi will be close to its mean value with high probability 
(by the law of large numbers), and thereby gives justification to the use of local expansions 
for the probabilities of the findings. 

Due to space constraints, the detailed proofs of the theorems given in this section are de­
ferred to the long version of this paper, and we will instead only sketch the intuitions for 
the proofs here. 

Theorem 1 Let K (the number offindings) be fixed, and suppose IfJij I :::; ~ for all i, j for 

some fixed constantT. Then the absolute error of the MF(k) approximation is 0 (N(!:!1)/2) 

for k odd and 0 (N(k72+1) ) for k even. 

Proof intuition. First consider the case of odd k. Since IfJij I :::; ~, the quantity Ei = Zi -
J-Li = 2:j fJij (dj - E[ dj ]) is like an average of N random variables, and hence has standard 

deviation on the order 11m. Since MF(k) matches F up to the k-th order derivatives, we 
find that when we take a Taylor expansion ofMF(k)'s error, the leading non-zero term is the 
k + 1-st order term, which contains quantities such as 10:+1. Now because Ei has standard 
deviation on the order 11m, it is unsurprising that E[E:+l] is on the order 1IN(k+l)/2, 
which gives the error of MF(k) for odd k. 

For k even, the leading non-zero term in the Taylor expansion of the error is a k + 1-st order 
term with quantities such as 10:+1. But if we think of Ei as converging (via a central limit 
theorem effect) to a symmetric distribution, then since symmetric distributions have small 
odd central moments, E[ 10:+1] would be small. This means that for k even, we may look to 
the order k + 2 term for the error, which leads to MF(k) having the the same big-O error as 
MF(k + 1). Note this is also consistent with how MF(O) and MF(l) always give the same 
estimates and hence have the same absolute error. 0 

A theorem may also be proved for the convergence rate of the Jaakkola and Jordan (JJ) 
algorithm. For simplicity, we state it here only for noisy-OR networks. 2 A closely related 
result also holds for sigmoid networks with suitably modified assumptions; see the full 
paper. 

Theorem 2 Let K befixed, and suppose 'Ij;(z) = 1-e-z is the noisy-ORfunction. Suppose 
further that 0 :::; fJij :::; ~ for all i, j for some fixed constant T, and that J-Li ~ J-Lmin for all 
i, for some fixed J-Lmin > O. Then the absolute error of the JJ approximation is 0 (~ ). 

2Note in any case that 11 can be applied only when 1/J is log-concave, such as in noisy-OR networks 
(where incidentally all weights are non-negative). 
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The condition of some Pmin lowerbounding the Pi'S ensures that the findings are not too 
unlikely; for it to hold, it is sufficient that there be bias ("leak") nodes in the network with 
weights bounded away from zero. 

Proof intuition. Neglecting negative findings, (which as discussed do not need to be han­
dled variationally,) this result is proved for a "simplified" version of the JJ algorithm, that 
always chooses the variational parameters so that for each i, the exponential upperbound 
on '1/J(Zi) is tangent to '1/J at Zi = Pi. (The "normal" version of JJ can have error no worse 
than this simplified one.) Taking a Tay lor expansion again of the approximation's error, we 
find that since the upperbound has matched zeroth and first derivatives with F, the error is 
a second order term with quantities such as f.t . As discussed in the MF(k) proof outline, 
this quantity has expectation on the order 1jN, and hence JJ's error is O(ljN). 0 

To summarize our results in the most useful cases, we find that MF(O) has a convergence 
rate of O(ljN) , both MF(2) and MF(3) have rates of O(ljN2) , and JJ has a convergence 
rate of O(ljN). 

4 Simulation results 

4.1 Artificial networks 

We carried out a set of simulations that were intended to verify the theoretical results pre­
sented in the previous section. We used bipartite noisy-OR networks, with full connectivity 
between layers and with the weights ()ij chosen uniformly in (0, 2jN). The number N of 
top-level ("disease") nodes ranged from 10 to 1000. Priors on the disease nodes were 
chosen uniformly in (0,1). 

The results are shown in Figure 1 for one and five positive findings (similar results where 
obtained for additional positive findings). 
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Figure 1: Absolute error in likelihood (averaged over many randomly generated networks) as a func­
tion of the number of disease nodes for various algorithms. The short-dashed lines are the KS upper 
and lower bounds (these curves overlap in the left panel), the long-dashed line is the 11 algorithm and 
the solid lines are MF(O), MF(2) and MF(3) (the latter two curves overlap in the right panel). 

The results are entirely consistent with the theoretical analysis, showing nearly exactly the 
expected slopes of -112, -1 and -2 on a loglog plot. 3 Moreover, the asymptotic results are 

3The anomalous behavior of the KS lower bound in the second panel is due to the fact that the 
algorithm generally finds a vacuous lower bound of 0 in this case, which yields an error which is 
essentially constant as a function of the number of diseases. 






