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Abstract 

Stochastic meta-descent (SMD) is a new technique for online adap­
tation of local learning rates in arbitrary twice-differentiable sys­
tems. Like matrix momentum it uses full second-order information 
while retaining O(n) computational complexity by exploiting the 
efficient computation of Hessian-vector products. Here we apply 
SMD to independent component analysis, and employ the result­
ing algorithm for the blind separation of time-varying mixtures. 
By matching individual learning rates to the rate of change in each 
source signal's mixture coefficients, our technique is capable of si­
multaneously tracking sources that move at very different, a priori 
unknown speeds. 

1 Introduction 

Independent component analysis (ICA) methods are typically run in batch mode in 
order to keep the stochasticity of the empirical gradient low. Often this is combined 
with a global learning rate annealing scheme that negotiates the tradeoff between 
fast convergence and good asymptotic performance. For time-varying mixtures, 
this must be replaced by a learning rate adaptation scheme. Adaptation of a single, 
global learning rate, however, facilitates the tracking only of sources whose mixing 
coefficients change at comparable rates [1], resp. switch all at the same time [2]. 
In cases where some sources move much faster than others, or switch at different 
times, individual weights in the unmixing matrix must adapt at different rates in 
order to achieve good performance. 

We apply stochastic meta-descent (SMD), a new online adaptation method for local 
learning rates [3, 4], to an extended Bell-Sejnowski ICA algorithm [5] with natural 
gradient [6] and kurtosis estimation [7] modifications. The resulting algorithm is 
capable of separating and tracking a time-varying mixture of 10 sources whose 
unknown mixing coefficients change at different rates. 
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2 The SMD Algorithm 

Given a sequence XQ, Xl, ... of data points, we minimize the expected value of a 
twice-differentiable loss function fw(x) with respect to its parameters W by stochas­
tic gradient descent: 

Wt+l = Wt + Pt· 8t , where It (1) 

and . denotes component-wise multiplication. The local learning rates P are best 
adapted by exponentiated gradient descent [8, 9], so that they can cover a wide 
dynamic range while staying strictly positive: 

lnpt 1 ... a fwt (xt) 
npt-l - I-t alnp 

Pt-l . exp(1-t It . Vt) , where Vt (2) 

and I-t is a global meta-learning rate. This approach rests on the assumption that 
each element of P affects f w( x) only through the corresponding element of w. With 
considerable variation, (2) forms the basis of most local rate adaptation methods 
found in the literature. 

In order to avoid an expensive exponentiation [10] for each weight update, we typ­
ically use the linearization etL ~ 1 + u, valid for small luI, giving 

(3) 

where we constrain the multiplier to be at least (typically) (} = 0.1 as a safeguard 
against unreasonably small - or negative - values. For the meta-level gradient 
descent to be stable, I-t must in any case be chosen such that the multiplier for P does 
not stray far from unity; under these conditions we find the linear approximation 
(3) quite sufficient. 

Definition of v. The gradient trace v should accurately measure the effect that 
a change in local learning rate has on the corresponding weight. It is tempting to 
consider only the immediate effect of a change in Pt on Wt+l: declaring Wt and 8t 
in (1) to be independent of Pt, one then quickly arrives at 

... _ aWt+l ... ~ 
Vt+l = ~l ... = Pt· Ut 

u npt 
(4) 

However, this common approach [11, 12, 13, 14, 15] fails to take into account the 
incremental nature of gradient descent: a change in P affects not only the current 
update of W, but also future ones. Some authors account for this by setting v to 
an exponential average of past gradients [2, 11, 16]; we found empirically that the 
method of Almeida et al. [15] can indeed be improved by this approach [3]. While 
such averaging serves to reduce the stochasticity of the product It ·It-l implied by 
(3) and (4), the average remains one of immediate, single-step effects. 

By contrast, Sutton [17, 18] models the long-term effect of P on future weight 
updates in a linear system by carrying the relevant partials forward through time, 
as is done in real-time recurrent learning [19]. This results in an iterative update 
rule for v, which we have extended to nonlinear systems [3, 4]. We define vas an 
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exponential average of the effect of all past changes in p on the current weights: 

... - ( A) ~ d OWt+1 
Vt+ 1 = 1 - L.J 1\ 0 1 ... 

i=O . npt-i 
(5) 

The forgetting factor 0 ~ A ~ 1 is a free parameter of the algorithm. Inserting (1) 
into (5) gives 

(6) 

where H t denotes the instantaneous Hessian of fw(i!) at time t. The approximation 
in (6) assumes that (Vi> 0) oPt!OPt-i = 0; this signifies a certain dependence on 
an appropriate choice of meta-learning rate p.. Note that there is an efficient O(n) 
algorithm to calculate HtVt without ever having to compute or store the matrix 
H t itself [20]; we shall elaborate on this technique for the case of independent 
component analysis below. 

Meta-level conditioning. The gradient descent in P at the meta-level (2) may 
of course suffer from ill-conditioning just like the descent in W at the main level 
(1); the meta-descent in fact squares the condition number when v is defined as the 
previous gradient, or an exponential average of past gradients. Special measures to 
improve conditioning are thus required to make meta-descent work in non-trivial 
systems. 

Many researchers [11, 12, 13, 14] use the sign function to radically normalize the 
p-update. Unfortunately such a nonlinearity does not preserve the zero-mean prop­
erty that characterizes stochastic gradients in equilibrium -- in particular, it will 
translate any skew in the equilibrium distribution into a non-zero mean change in 
p. This causes convergence to non-optimal step sizes, and renders such methods un­
suitable for online learning. Notably, Almeida et al. [15] avoid this pitfall by using 
a running estimate of the gradient's stochastic variance as their meta-normalizer. 

In addition to modeling the long-term effect of a change in local learning rate, our 
iterative gradient trace serves as a highly effective conditioner for the meta-descent: 
the fixpoint of (6) is given by 

Vt = [AHt + (I-A) diag(I/Pi)]-llt (7) 

- a modified Newton step, which for typical values of A (i. e., close to 1) scales with 
the inverse of the gradient. Consequently, we can expect the product It . Vt in (2) 
to be a very well-conditioned quantity. Experiments with feedforward multi-layer 
perceptrons [3, 4] have confirmed that SMD does not require explicit meta-level 
normalization, and converges faster than alternative methods. 

3 Application to leA 

We now apply the SMD technique to independent component analysis, using the 
Bell-Sejnowski algorithm [5] as our base method. The goal is to find an unmixing 
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matrix Wt which - up to scaling and permutation - provides a good linear esti­
mate Vt == WtXt of the independent sources St present in a given mixture signal Xt· 
The mixture is generated linearly according to Xt = Atst , where At is an unknown 
(and unobservable) full rank matrix. 

We include the well-known natural gradient [6] and kurtosis estimation [7] modifi­
cations to the basic algorithm, as well as a matrix Pt of local learning rates. The 
resulting online update for the weight matrix Wt is 

(8) 

where the gradient D t is given by 

Dt == 8f;;~~t) = ([Vt ± tanh(Vt)] vt - 1) Wt , (9) 

with the sign for each component of the tanh(Vt) term depending on its current 
kurtosis estimate. 

Following Pearlmutter [20], we now define the differentiation operator 

8g(W~r+ rVt) Ir=o RVt (g(Wt» == u (10) 

which describes the effect on 9 of a perturbation of the weights in the direction of 
Vt. We can use RVt to efficiently calculate the Hessian-vector product 

(11) 

where "vee" is the operator that concatenates all columns of a matrix into a single 
column vector. Since Rv, is a linear operator, we have 

Rv,(Wt ) 
RVt (Vt) -

RVt (tanh(Vd) 

Vt, 
Rv, (WtXt) = VtXt, 

diag( tanh' (Vt») VtXt , 

and so forth (cf. [20]). Starting from (9), we apply the RVt operator to obtain 

Ht*Vt Rv,[([Vt ± tanh(Vt)] ytT - 1) Wt] 

- ([Vt ± tanh(Vt)] vt - 1) Vt + RVt([ Yt ± tanh(Vt)] vt - 1) Wt 

(12) 

(13) 

(14) 

([ Vt ± tanh(Vt)] vt - 1) Vt + (15) 

[(1 ± diag[tanh'(Vt)]) VtXt vt + [Vt ± tanh(Vd](Vtxt)T] Wt 

In conjunction with the matrix versions of our learning rate update (3) 

(16) 

and gradient trace (6) 

(17) 

this constitutes our SMD-ICA algorithm. 
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4 Experiment 

The algorithm was tested on an artificial problem where 10 sources follow elliptic 
trajectories according to 

Xt = (Abase + Al sin(wt) + A2 cos(wt)) St (18) 

where Abase is a normally distributed mixing matrix, as well as Al and A2, whose 
columns represent the axes of the ellipses on which the sources travel. The velocities 
ware normally distributed around a mean of one revolution for every 6000 data 
samples. All sources are supergaussian. 

The ICA-SMD algorithm was implemented with only online access to the data, 
including on-line whitening [21]. Whenever the condition number of the estimated 
whitening matrix exceeded a large threshold (set to 350 here), updates (16) and (17) 
were disabled to prevent the algorithm from diverging. Other parameters settings 
were It = 0.1, >. = 0.999, and p = 0.2. 

Results that were not separating the 10 sources without ambiguity were discarded. 
Figure 1 shows the performance index from [6] (the lower the better, zero being 
the ideal case) along with the condition number of the mixing matrix, showing that 
the algorithm is robust to a temporary confusion in the separation. The ordinate 
represents 3000 data samples, divided into mini-batches of 10 each for efficiency. 

Figure 2 shows the match between an actual mixing column and its estimate, in 
the subspace spanned by the elliptic trajectory. The singularity occurring halfway 
through is not damaging performance. Globally the algorithm remains stable as 
long as degenerate inputs are handled correctly. 

5 Conclusions 

Once SMD-ICA has found a separating solution, we find it possible to simultane­
ously track ten sources that move independently at very different, a priori unknown 

OOr-------~------T_------~------,_------~------~ 
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30 

Error index -
cond(A)120 ---+---

Figure 1: Global view of the quality of separation 
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Figure 2: Projection of a column from the mixing matrix. Arrows link the exact 
point with its estimate; the trajectory proceeds from lower right to upper left . 

speeds. To continue tracking over extended periods it is necessary to handle mo­
mentary singularities, through online estimation of the number of sources or some 
other heuristic solution. SMD's adaptation of local learning rates can then facilitate 
continuous, online use of ICA in rapidly changing environments. 
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