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Abstract 

Bayesian predictions are stochastic just like predictions of any other 
inference scheme that generalize from a finite sample. While a sim­
ple variational argument shows that Bayes averaging is generaliza­
tion optimal given that the prior matches the teacher parameter 
distribution the situation is less clear if the teacher distribution is 
unknown. I define a class of averaging procedures, the temperated 
likelihoods, including both Bayes averaging with a uniform prior 
and maximum likelihood estimation as special cases. I show that 
Bayes is generalization optimal in this family for any teacher dis­
tribution for two learning problems that are analytically tractable: 
learning the mean of a Gaussian and asymptotics of smooth learn­
ers. 

1 Introduction 

Learning is the stochastic process of generalizing from a random finite sample of 
data. Often a learning problem has natural quantitative measure of generalization. 
If a loss function is defined the natural measure is the generalization error, i.e., the 
expected loss on a random sample independent of the training set. Generalizability 
is a key topic of learning theory and much progress has been reported. Analytic 
results for a broad class of machines can be found in the litterature [8, 12, 9, 10] 
describing the asymptotic generalization ability of supervised algorithms that are 
continuously parameterized. Asymptotic bounds on generalization for general ma­
chines have been advocated by Vapnik [11]. Generalization results valid for finite 
training sets can only be obtained for specific learning machines, see e.g. [5]. A 
very rich framework for analysis of generalization for Bayesian averaging and other 
schemes is defined in [6]. 

A veraging has become popular as a tool for improving generalizability of learning 
machines . In the context of (time series) forecasting averaging has been investigated 
intensely for decades [3]. Neural network ensembles were shown to improve general­
ization by simple voting in [4] and later work has generalized these results to other 
types of averaging. Boosting, Bagging, Stacking, and Arcing are recent examples 
of averaging procedures based on data resampling that have shown useful see [2] 
for a recent review with references. However, Bayesian averaging in particular is 
attaining a kind of cult status. Bayesian averaging is indeed provably optimal in a 



266 L. K. Hansen 

number various ways (admissibility, the likelihood principle etc) [1]. While it fol­
lows by construction that Bayes is generalization optimal if given the correct prior 
information, i.e., the teacher parameter distribution, the situation is less clear if 
the teacher distribution is unknown. Hence, the pragmatic Bayesians downplay the 
role of the prior. Instead the averaging aspect is emphasized and "vague" priors are 
invoked. It is important to note that whatever prior is used Bayesian predictions 
are stochastic just like predictions of any other inference scheme that generalize 
from a finite sample. 

In this contribution I analyse two scenarios where averaging can improve gener­
alizability and I show that the vague Bayes average is in fact optimal among the 
averaging schemes investigated. Averaging is shown to reduce variance at the cost 
of introducing bias, and Bayes happens to implement the optimal bias-variance 
trade-off. 

2 Bayes and generalization 

Consider a model that is smoothly parametrized and whose predictions can be 
described in terms of a density function1 . Predictions in the model are based on a 
given training set: a finite sample D = {Xa}~=l of the stochastic vector x whose 
density - the teacher - is denoted p(xIOo). In other words the true density is assumed 
to be defined by a fixed, but unknown, teacher parameter vector 00 . The model, 
denoted H, involves the parameter vector ° and the predictive density is given by 

p(xID, H) = ! p(xIO, H)p(OID, H)dO (1) 

p(OID, H) is the parameter distribution produced in training process. In a maxi­
mum likelihood scenario this distribution is a delta function centered on the most 
likely parameters under the model for the given data set. In ensemble averaging 
approaches, like boosting bagging or stacking, the distribution is obtained by train­
ing on resampled traning sets. In a Bayesian scenario, the parameter distribution 
is the posterior distribution, 

p(DIO, H)p(OIH) 
p(OID, H) = f p(DIO', H)p(O'IH)dO' (2) 

where p(OIH) is the prior distribution (probability density of parameters if D is 
empty). In the sequel we will only consider one model hence we suppress the model 
conditioning label H. 

The generalization error is the average negative log density (also known as simply 
the "log loss" - in some applied statistics works known as the "deviance") 

r(DIOo) = ! -logp(xID)p(xIOo)dx, (3) 

The expected value of the generalization error for training sets produced by the 
given teacher is given by 

f(Oo) = ! ! -logp(xID)p(xIOo)dxp(DIOo)dD. (4) 

lThis does not limit us to conventional density estimation; pattern recognition and 
many functional approximations problems can be formulated as density estimation prob­
lems as well. 
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Playing the game of "guessing a probability distribution" [6] we not only face a 
random training set, we also face a teacher drawn from the teacher distribution 
p( Bo) . The teacher averaged generalization must then be defined as 

r = J f(Bo)p(Bo)dBo . (5) 

This is the typical generalization error for a random training set from the randomly 
chosen teacher - produced by the model H. The generalization error is minimized 
by Bayes averaging if the teacher distribution is used as prior. To see this, form the 
Lagrangian functional 

£[q(xID)] = J J J -logq(xID)p(xIBo)dxp(DIBo)dDp(Bo)dBo+A J q(xID)dx (6) 

defined on positive functions q(xID). The second term is used to ensure that q(xID) 
is a normalized density in x . Now compute the variational derivative to obtain 

6£ 1 J 6q(xID) = - q(xID) p(xIBo)p(DIBo)p(Bo)dBo + A. (7) 

Equating this derivative to zero we recover the predictive distribution of Bayesian 
averagmg, 

J p(DIB)p(B) 
q(xID) = p(xIB) J p(DIB')p(B')dB' dB, (8) 

where we used that A = J p(DIB)p(B)dB is the appropriate normalization constant . 
It is easily verified that this is indeed the global minimum of the averaged gener­
alization error. We also note that if the Bayes average is performed with another 
prior than the teacher distribution p( Bo), we can expect a higher generalization er­
ror . The important question from a Bayesian point of view is then: Are there cases 
where averaging with generic priors (e.g. vague or uniform priors) can be shown to 
be optimal? 

3 Temperated likelihoods 

To come closer to a quantative statement about when and why vague Bayes is the 
better procedure we will analyse two problems for which some analytical progress is 
possible. We will consider a one-parameter family of learning procedures including 
both a Bayes and the maximum likelihood procedure, 

v(DIB) 
p(BI!3,D,H) = Jpf3(DIB')dB" (9) 

where !3 is a positive parameter (plying the role of an inverse temperature). The 
family of procedures are all averaging procedures, and !3 controls the width of the 
average. Vague Bayes (here used synonymously with Bayes with a uniform prior) 
is recoved for !3 = 1, while the maximum posterior procedure is obtained by cooling 
to zero width !3 --+ 00 . 

In this context the generalization design question can be frased as follows : is there 
an optimal temperature in the family of the temperated likelihoods? 

3.1 Example: ID normal variates 

Let the teacher distribution be given by 

p(xIBo) = ~exp (-~(X -Bo)2) 
211"<72 2<7 

(10) 
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The model density is of the same form with (J unknown and u2 assumed to be 
known. For N examples the posterior (with a uniform prior) is, 

p(OID) = J 2:U2 exp (- ::2 (x - (J)2) , (11) 

with x = 1/ N Eo: Xo:. The temperated likelihood is obtained by raising to the ,8'th 
power and normalizing, 

f7iN (,8N ) p((JID,,8) = V ~ exp - 2u2 (x - (J)2 . (12) 

The predictive distribution is found by integrating w.r.t. (J, 

p(xID,,8) = !P(ZIB)P(BID,~)dB; ~exp (--212 (x- X)2) , (13) 
21!'u$ u f3 

with u~ = u2(1+1/,8N). We note that this distribution is wider for all the averaging 
procedures than it is for maximum likelihood (,8 -T (0), i.e., less variant. For very 
small ,8 the predictive distribution is almost independent of the data set, hence 
highly biased. 

It is straightforward to compute the generalization error of the predictive distribu­
tion for general,8. First we compute the generalization error for the specific training 
set D, 

r(D,,8, (Jo) = ! -logp(xID, ,8)p(xl(Jo)dx = log )21!'u$ + 2~~ ((x - (JO)2 + ( 2) , 

(14) 
The average generalization error is then found by averaging w.r.t the sampling 
distribution using x"" N((Jo, u2/N)., 

r(,8) = ! r(D, ,8)dDp(DI(Jo) = log )21!'u$ + 2:$ (~ + 1) , (15) 

We first note that the generalization error is independent of the teacher (Jo param­
eter, this happened because (J is a "location" parameter. The ,8-dependency of the 
averaged generalization error is depicted in Figure 1. Solving 8r(,8) /8,8 = 0 we find 
that the optimal ,8 solves 

u$=U2(,8~+I)=U2(~+I) :=} ,8=1 (16) 

Note that this result holds for any N and is independent of the teacher parameter. 
The Bayes averaging at unit temperature is optimal for any given value of (Jo, hence, 
for any teacher distribution. We may say that the vague Bayes scheme is robust 
to the teacher distribution in this case. Clearly this is a much stronger optimality 
than the more general result proven above. 

3.2 Bias-variance tradeoff 

It is interesting to decompose the generalization error in Eq. 15 in bias and variance 
components. We follow Heskes [7] and define the bias error as the generalization 
error of the geometric average distribution, 

B(,8) = ! -logp(x)p(xl(Jo)dx, (17) 
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Figure 1: Bias-variance trade-off as function of the width of the temperated likeli­
hood ensemble (temperature = 1/ (3) for N = 1. The bias is computed as the gen­
eralization error of the predictive distribution obtained from the geometric average 
distribution w.r.t. training set fluctuations as proposed by Heskes. The predictive 
distribution produced by Bayesian averaging corresponds to unit temperature (ver­
tical line) and it achieves the minimal generalization error. Maximum-likelihood 
estimation for reference is recovered as the zero width/temperature limit. 

with 

p(x) = Z-l exp (/ 10g(P(X 1D)]P(D I80 )dD) . 

Inserting from Eq. (13), we find 

p(z) = ~exp (-~(X -80)2) . 
27r0'~ 0' f3 

Integrating over the teacher distribution we find, 

1 0'2 

B(f3) = -2 log 27r0'~ + -2 
20'f3 

The variance error is given by V(f3) = r(f3) - B(f3) , 

0'2 

V (f3) = 2N O'~ 

(18) 

(19) 

(20) 

(21) 

We can now quantify the statements above. By averaging a bias is introduced -the 
predictive distribution becomes wider- which decrease the variance contribution 
initially so that the generalization error being the sum of the two decreases. At still 
higher temperatures the bias becomes too strong and the generalization error start 
to increase. The Bayes average at unit temperature is the optimal trade-off within 
the given family of procedures. 
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3.3 Asymptotics for smoothly parameterized models 

We now go on to show that a similar result also holds for general learning prob­
lems in limit of large data sets. We consider a system parameterized by a finite 
dimensional parameter vector O. For a given large training set and for a smooth 
likelihood function, the temperated likelihood is approximately Gaussian centered 
at the maximum posterior parameters[13]' hence the normalized temperated poste­
rior reads 

P(OI(3D,H) = �I�(�3�N�A�(�~�O�M�L�)� lexp (_(3; 60'A(D,OML)60) (22) 

where 60 = O-OML, with OML = OML(D) denoting the maximum likelihood solution 
for the given training sample. The second derivative or Hessian matrix is given by 

1 N 
A(D,O) N LA(xa,O) (23) 

a=l 

A(x,O) = 
{)2 

()O{)O' - log p( x 10) (24) 

The predictive distribution is given by 

p(xl(3, D) = ! p(xIO)p(OI(3, D)dO (25) 

we write p(xIO) = exp(-f(xIO)) and expand f(xIO) around OML to second order, we 
find 

p(xIO) �~� p(XIOML) exp (-a(xIOML)'60 - �~�6�0�'� A(xIOML)60) . (26) 
We are then in position to perform the integration over the posterior to find the 
normalized predictive distribution, 

p(xl(3, D) = p(XIOML) 
I(3N A(D)I 1 , 

I(3NA(D) + A(x)1 exp ( 2'a(xIOML) A(xIOML)a(xIOML)). 

(27) 
Proceeding as above, we compute the generalization error 

f((3, ( 0 ) = ! ! -logp(xl(3, D)p(xIOo)dxp(DIOo)dD (28) 

For sufficiently smooth likelihoods, fluctuations in the maximum likelihood param­
eters will be asymptotic normal, see e.g. [8], and furthermore fluctuations in A(D) 
can be neglected, this means that we can approximate, 

A(x) + A(D) �~� �(�~� + l)Ao, Ao = ! A(xIOo)p(xIOo)dx (29) 

where Ao is the averaged Fisher information matrix. With these approximations 
(valid as N --+ (0) the generalization error can be found, 

d ( 1) d 1+ �~� 
f((3, ( 0 ) �~� f(oo) + 2 log 1 + (3N - 21 + (3N' (30) 

with d = dim(O) denoting the dimension of the parameter vector. Like in the ID 
example (Eq. (15)) we find the generalization error is asymptotically independent 
of the teacher parameters. It is minimized for (3 = 1 and we conclude that Bayes 
is well-temperated in the asymptotics and that this holds for any teacher distri­
bution. In the Bayes literature this is refered to as the prior is overwhelmed by 
data [1]. Decomposing the errors in bias and variance contributions we find similar 
results as for in ID example, Bayes introduces the optimal bias by averaging at unit 
temperature. 




