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Abstract 

Generative probability models such as hidden ~larkov models pro­
vide a principled way of treating missing information and dealing 
with variable length sequences. On the other hand , discriminative 
methods such as support vector machines enable us to construct 
flexible decision boundaries and often result in classification per­
formance superior to that of the model based approaches. An ideal 
classifier should combine these two complementary approaches. In 
this paper, we develop a natural way of achieving this combina­
tion by deriving kernel functions for use in discriminative methods 
such as support vector machines from generative probability mod­
els. We provide a theoretical justification for this combination as 
well as demonstrate a substantial improvement in the classification 
performance in the context of D~A and protein sequence analysis. 

1 Introduction 

Speech, vision , text and biosequence data can be difficult to deal with in the context 
of simple statistical classification problems. Because the examples to be classified 
are often sequences or arrays of variable size that may have been distorted in par­
ticular ways, it is common to estimate a generative model for such data, and then 
use Bayes rule to obtain a classifier from this model. However. many discrimina­
tive methods, which directly estimate a posterior probability for a class label (as 
in Gaussian process classifiers [5]) or a discriminant function for the class label 
(as in support vector machines [6]) have in other areas proven to be superior to 
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generative models for classification problems. The problem is that there has been 
no systematic way to extract features or metric relations between examples for use 
with discriminative methods in the context of difficult data types such as those 
listed above. Here we propose a general method for extracting these discriminatory 
features using a generative model. V{hile the features we propose are generally 
applicable, they are most naturally suited to kernel methods. 

2 Kernel methods 

Here we provide a brief introduction to kernel methods; see, e.g., [6] [5] for more 
details. Suppose now that we have a training set of examples Xl and corresponding 
binary labels 51 (±1) . In kernel methods. as we define them. the label for a new 
example X is obtained from a weighted sum of the training labels. The weighting of 
each training label 52 consists of two parts: 1) the overall importance of the example 
Xl as summarized with a coefficient '\1 and 2) a measure of pairwise "similarity" 
between between XI and X, expressed in terms of a kernel function K(X2' X). The 
predicted label S for the new example X is derived from the following rule: 

s ~ sign ( ~ S, '\,K(X,. X) ) (1) 

We note that this class of kernel methods also includes probabilistic classifiers, in 
\vhich case the above rule refers to the label with the maximum probability. The 
free parameters in the classification rule are the coefficients '\1 and to some degree 
also the kernel function K . To pin down a particular kernel method. two things 
need to be clarified. First , we must define a classification loss . or equivalently, the 
optimization problem to solve to determine appropriate values for the coefficients 
'\1' Slight variations in the optimization problem can take us from support vector 
machines to generalized linear models. The second and the more important issue is 
the choice of the kernel function - the main topic of this paper. \Ve begin with a 
brief illustration of generalized linear models as kernel methods. 

2.1 Generalized linear models 

For concreteness we consider here only logistic regression models. while emphasizing 
that the ideas are applicable to a larger class of models l . In logistic regression 
models , the probability of the label 5 given the example X and a parameter vector 
e is given by2 

P(5IX. e) = (7 (5eT X) (2) 

where (7(z) = (1 + e- z) - l is the logistic function. To control the complexity of 
the model when the number of training examples is small we can assign a prior 
distribution p(e) over the parameters. \Ve assume here that the prior is a zero 
mean Gaussian with a possibly full covariance matrix L:. The maximum a posteriori 
(l\IAP) estimate for the parameters e given a training set of examples is found by 

1 Specifically. it applies to all generalized linear models whose transfer functions are 
log-concave. 

2Here we assume that the constant + 1 is appended to every feature vector X so that 
an adjustable bias term is included in the inner product eT X. 
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maximizing the following penalized log-likelihood: 

I: log P(S, IX 1 , B) + log P(B) 

where the constant c does not depend on B. It is straightforward to show, simply 
by taking the gradient with respect to the parameters , that the solution to this 
(concave) maximization problem can be written as3 

(4) 

Xote that the coefficients A, appear as weights on the training examples as in the 
definition of the kernel methods . Indeed. inserting the above solution back into the 
conditional probability model gives 

(5) 

By identifying !..:(X/. X) = X;'f.X and noting that the label with the maximum 
probability is the aile that has the same sign as the sum in the argument. this gives 
the decision rule (1). 

Through the above derivation , we have written the primal parameters B in terms 
of the dual coefficients A,.J. Consequently. the penalized log-likelihood function can 
be also written entirely in terms of A, : the resulting likelihood function specifies 
how the coefficients are to be optimized. This optimization problem has a unique 
solution and can be put into a generic form. Also , the form of the kernel function 
that establishes the connection between the logistic regression model and a kernel 
classifier is rather specific , i.e .. has the inner product form K(X,. X) = X;'f.X. 
However. as long as the examples here can be replaced with feature vectors derived 
from the examples. this form of the kernel function is the most general. \Ve discuss 
this further in the next section. 

3 The kernel function 

For a general kernel fUIlction to be valid. roughly speaking it only needs to be pos­
itive semi-definite (see e.g. [7]). According to the t-Iercer 's theorem. any such valid 
kernel function admits a representation as a simple inner product bet\\'een suitably 
defined feature vectors. i.e .. !":(X,.Xj) = 0\,0.'\) . where the feature vectors come 
from some fixed mapping X -> ¢.'\. For example. in the previous section the kernel 
function had the form X;'f.Xj ' which is a simple inner product for the transformed 
feature vector ¢.'\ = 'f. 1- X. 

Specifying it simple inner product in the feature space defines a Euclidean met­
ric space. Consequently. the Euclidean distances between the feature vectors are 
obtained directly from the kernel fUllction: with the shorthand notation K ,} = 

3This corresponds to a Legendre transformation of the loss functions log a( z) . 
.}This is possible for all those e that could arise as solutions to the maximum penalized 

likelihood problem: in other words. for all relevant e. 
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K(Xi , Xj) we get II<Px, - <PxJ W = K ti - 2Ktj + K jj . In addition to defining the 
metric structure in the feature space, the kernel defines a pseudo metric in the orig­
inal example space through D(Xi,Xj) = II<px. - <pxJII. Thus the kernel embodies 
prior assumptions about the metric relations between the original examples. No 
systematic procedure has been proposed for finding kernel functions, let alone find­
ing ones that naturally handle variable length examples etc. This is the topic of the 
next section. 

4 Kernels from generative probability models: the Fisher 
kernel 

The key idea here is to derive the kernel function from a generative probability 
model. We arrive at the same kernel function from two different perspectives, that 
of enhancing the discriminative power of the model and from an attempt to find 
a natural comparison between examples induced by the generative model. Both of 
these ideas are developed in more detail in the longer version of this paper[4]. 

We have seen in the previous section that defining the kernel function automatically 
implies assumptions about metric relations between the examples. We argue that 
these metric relations should be defined directly from a generative probability model 
P(XIO). To capture the generative process in a metric between examples we use 
the gradient space of the generative model. The gradient of the log-likelihood with 
respect to a parameter describes how that parameter contributes to the process of 
generating a particular example5 . This gradient space also naturally preserves all 
the structural assumptions that the model encodes about the generation process. 

To develop this idea more generally, consider a parametric class of models P(XIO) , 
o E e. This class of probability models defines a Riemannian manifold Ale with 
a local metric given by the Fisher information matrix6 I, where I = Ex{UxU{}, 
Us = \1 () log P(XIB), and the expectation is over P(XIO) (see e.g. [1]). The gradient 
of the log-likelihood , Us , is called the Fisher score, and plays a fundamental role in 
our development. The local metric on lvle defines a distance between the current 
model P(XIO) and a nearby model P(XIO+J). This distance is given by D(O, 0+15) = 
~JT 16, which also approximates the KL-divergence between the two models for a 
sufficiently small 6. 

The Fisher score Us = \l(} log P(XIB) maps an example X into a feature vector 
that is a point in the gradient space of the manifold Ale. We call this the Fisher 
score mapping. This gradient Us can be used to define the direction of steepest 
ascent in log P(X 10) for the example X along the manifold, i.e. , the gradient in the 
direction 6 that maximizes log P( X 10) while traversing the minimum distance in 
the manifold as defined by D(O, 0 + 6). This latter gradient is known as the natural 
gradient (see e.g. [1]) and is obtained from the ordinary gradient via <Ps = I - I Ux. 
We will call the mapping X ~ <Px the natural mapping of examples into feature 
vectors7 . The natural kernel of this mapping is the inner product between these 

5For the exponential family of distributions, under the natural parameterization () , 
these gradients , less a normalization constant that depends on () , form sufficient statistics 
for the example. 

6For simplicity we have suppressed the dependence of I and Ux on the parameter 
setting (), or equivalently, on the position in the manifold . 

7 Again, we have suppressed dependence on the parameter setting () here. 
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feature vectors relative to the local Riemannian metric: 

(6) 

We call this the Fisher kernel owing to the fundamental role played by the Fisher 
scores in its definition. The role of the information matrix is less significant; indeed, 
in the context of logistic regression models, the matrix appearing in the middle of 
the feature vectors relates to the covariance matrix of a Gaussian prior, as show 
above. Thus, asymptotically, the information matrix is immaterial, and the simpler 
kernel KU(Xi , Xj) ex u.Z, Ux) provides a suitable substitute for the Fisher kernel. 

We emphasize that the Fisher kernel defined above provides only the basic compar­
ison between the examples, defining what is meant by an "inner product" between 
the examples when the examples are objects of various t.ypes (e.g. variable length 
sequences). The way such a kernel funct.ion is used in a discriminative classifier 
is not specified here. Using the Fisher kernel directly in a kernel classifier, for ex­
ample, amounts to finding a linear separating hyper-plane in the natural gradient. 
(or Fisher score) feature space. The examples may not. be linearly separable in this 
feature space even though the natural metric st.ructure is given by t.he Fisher kernel. 
It may be advantageous to search in the space of quadratic (or higher order) deci­
sion boundaries, which is equivalent to transforming the Fisher kernel according to 
R(Xt , Xj) = (1 + K(Xt • x)))m and using the resulting kernel k in the classifier. 

\Ve are now ready to state a few properties of the Fisher kernel function. So long as 
the probability model P(XIB) is suitably regular then the Fisher kernel derived from 
it is a) a valid kernel function and b) invariant to any invertible (and differentiable) 
transformation of the model parameters. The rather informally stated theorem 
below motivates the use of this kernel function in a classification setting. 

Theorem 1 Given any suitably regular probability model P(XIB) with parameters 
B and assuming that the classification label is included as a latent variable, the 
Fisher kernel K(X1 , X)) = �V�~ �,� I-I Ux] derived from this model and employed in 
a kernel classifier is. asymptotically. never inferior to the MAP decision rule from 
this model. 

The proofs and other related theorems are presented in the longer version of this 
paper [4]. 

To summarize, we have defined a generic procedure for obtaining kernel functions 
from generative probability models. Consequently the benefits of generative mod­
els are immediately available to the discriminative classifier employing this kernel 
function. We now turn the experimental demonstration of the effectiveness of such 
a combined classifier. 

5 Experimental results 

Here we consider two relevant examples from biosequence analysis and compare 
the performance of the combined classifier to the best generative models used in 
these problems. vVe start with a DNA splice site classification problem, where the 
objective is to recognize true splice sites, i.e., the boundaries between expressed 
regions (exons) in a gene and the intermediate regions (introns). The dat.a set used 
in our experiments consisted of 9350 DNA fragments from C. elegans. Each of the 






