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Abstract 

We introduce a semi-supervised support vector machine (S3yM) 
method. Given a training set of labeled data and a working set 
of unlabeled data, S3YM constructs a support vector machine us­
ing both the training and working sets. We use S3YM to solve 
the transduction problem using overall risk minimization (ORM) 
posed by Yapnik. The transduction problem is to estimate the 
value of a classification function at the given points in the working 
set. This contrasts with the standard inductive learning problem 
of estimating the classification function at all possible values and 
then using the fixed function to deduce the classes of the working 
set data. We propose a general S3YM model that minimizes both 
the misclassification error and the function capacity based on all 
the available data. We show how the S3YM model for I-norm lin­
ear support vector machines can be converted to a mixed-integer 
program and then solved exactly using integer programming. Re­
sults of S3YM and the standard I-norm support vector machine 
approach are compared on ten data sets. Our computational re­
sults support the statistical learning theory results showing that 
incorporating working data improves generalization when insuffi­
cient training information is available. In every case, S3YM either 
improved or showed no significant difference in generalization com­
pared to the traditional approach. 
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1 INTRODUCTION 

In this work we propose a method for semi-supervised support vector machines 
(S3VM). S3VM are constructed using a mixture of labeled data (the training set) 
and unlabeled data (the working set) . The objective is to assign class labels to the 
working set such that the "best" support vector machine (SVM) is constructed. 
If the working set is empty the method becomes the standl1rd SVM approach to 
classification [20, 9, 8]. If the training set is empty, then the method becomes a 
form of unsupervised learning. Semi-supervised learning occurs when both training 
and working sets are nonempty. Semi-supervised learning for problems with small 
training sets and large working sets is a form of semi-supervised clustering. There 
are successful semi-supervised algorithms for k-means and fuzzy c-means clustering 
[4, 18]. Clustering is a potential application for S3VM as well. When the training 
set is large relative to the working set, S3VM can be viewed as a method for solving 
the transduction problem according to the principle of overall risk minimization 
(ORM) posed by Vapnik at the NIPS 1998 SVM Workshop and in [19, Chapter 10]. 
S3VM for ORM is the focus of this paper. 

In classification, the transduction problem is to estimate the class of each given 
point in the unlabeled working set. The usual support vector machine (SVM) ap­
proach estimates the entire classification function using the principle of statistical 
risk minimization (SRM). In transduction, one estimates the classification func­
tion at points within the working set using information from both the training and 
working set data. Theoretically, if there is adequate training data to estimate the 
function satisfactorily, then SRM will be sufficient. We would expect transduction 
to yield no significant improvement over SRM alone. If, however, there is inad­
equate training data, then ORM may improve generalization on the working set. 
Intuitively, we would expect ORM to yield improvements when the training sets are 
small or when there is a significant deviation between the training and working set 
subsamples of the total population. Indeed,the theoretical results in [19] support 
these hypotheses. 

In Section 2, we briefly review the standard SV:~\'1 model for structural risk minimiza­
tion . According to the principles of structural risk minimization, SVM minimize 
both the empirical misclassification rate and the capacity of the classification func­
tion [19, 20] using the training data. The capacity of the function is determined by 
margin of separation between the two classes based on the training set. ORM also 
minimizes the both the empirical misclassification rate and the function capacity. 
But the capacity of the function is determined using both the training and working 
sets. In Section 3, we show how SVM can be extended to the semi-supervised case 
and how mixed integer programming can be used practically to solve the resulting 
problem. We compare support vector machines constructed by structural risk min­
imization and overall risk minimization computationally on ten problems in Section 
4. Our computational results support past theoretical results that improved gener­
alization can be obtained by incorporating working set information during training 
when there is a deviation between the working set and training set sample distri­
butions. In three of ten real-world problems the semi-supervised approach, S3VM , 
achieved a significant increase in generalization. In no case did S3VM ever obtain a 
sifnificant decrease in generalization. We conclude with a discussion of more general 
S VM algorithms. 
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Figure 1: Optimal plane maximizes margin. 

2 SVM using Structural Risk Minimization 

The basic SRM task is to estimate a classification function f : RN -t {± I} using 
input-output training data from two classes 

(1) 

The function f should correctly classify unseen examples (x, Y), i.e. f(x) = y if (x, y) 
is generated from the same underlying probability distribution as the training data. 
In this work we limit discussion to linear classification functions. We will discuss 
extensions to the nonlinear case in Section 5. If the points are linearly separable, 
then there exist an n-vector wand scalar b such that 

or equivalently 

w· Xi - b ~ 1 
w . Xi - b :S - 1 

if Yi = 1, and 
if Yi = - 1, i = 1, . .. , f 

Yt [w . Xi - b] ~ 1, i = 1, ... , f. 

(2) 

(3) 

The "optimal" separating plane, W . X = b, is the one which is furthest from the 
closest points in the two classes. Geometrically this is equivalent to maximizing the 
separation margin or distance between the two parallel planes W . X = b + 1 and 
W . X = b - 1 (see Figure 1.) 

The "margin of separation" in Euclidean distance is 2/llw112 where IIw I1 2 = 
:L~=l wt is the 2-norm. To maximize the margin, we minimize IIw1l2/2 subject 
to the constraints (3). According to structural risk minimization, for a fixed em­
pirical misclassification rate, larger margins should lead to better generalization 
and prevent overfitting in high-dimensional attribute spaces. The classifier is called 
a support vector machine because the solution depends only on the points (called 
support vectors) located on the two supporting planes w· x = b - 1 and W · x = b + 1. 

In general the classes will not be separable, so the generalized optimal plane (GOP) 
problem (4) [9, 20] is used. A slack term T]! is added for each point such that if the 
point is misclassified , T]i 2: 1. The final GOP formulation is: 

min 
w ,b,'1 

s. t. 

e 1 
C LT]t + 2 II wll2 

i= l 

Ydw . Xi - b] + T]i 2: 1 
T]i ~ 0, i = 1, ... , f 

(4) 

where C > 0 is a fixed penalty parameter. The capacity control provided by the 
margin maximization is imperative to achieve good generalization [21 , 19]. 

The Robust Linear Programming (RLP) approach to SVM is identical to GOP 
except the margin term is changed from the 2-norm II wll2 to the I-norm, II wlll = 
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2::;=1 IWj l· The problem becomes the following robust linear program (RLP) [2, 7, 
1]: 

min 
w ,b,s ,,,, 

s.t. 

e n 

CL1]i + LS) 
i = l j = l 

Yt [w . Xi - b] + 1]i ~ 1 
1]i ~ 0, i = 1, ... , f 
-Sj <= Wj <= Sj, j = 1, ... , n. 

(5) 

The RLP formulation is a useful variation of SVM with some nice characteristics. 
The I-norm weight reduction still provides capacity control. The results in [13] can 
be used to show that minimizing II wi ll corresponds to maximizing the separation 
margin using the infinity norm. Statistical learning theory could potentially be 
extended to incorporate alternative norms. One major benefit of RLP over GOP 
is dimensionality reduction. Both RLP and GOP minimize the magnitude of the 
weights w. But RLP forces more of the weights to be 0 due to the properties of 
the I-norm. Another benefit of RLP over GOP is that it can be solved using linear 
programming instead of quadratic programming. Both approaches can be extended 
to handle nonlinear discrimination using kernel functions [8, 12] . Empirical compar­
isons of the approaches have not found any significant difference in generalization 
between the formulations [5, 7, 3, 12] . 

3 Semi-supervised support vector machines 

To formulate the S3VM , we start with either SVM formulation, (4) or (5) , and then 
add two constraints for each point in the working set. One constraint calculates 
the misclassification error as if the point were in class 1 and the other constraint 
calculates the misclassification error as if the point were in class - l. The objective 
function calculates the minimum of the two possible misclassification errors. The 
final class of the points corresponds to the one that results in the smallest error. 
Specifically we define the semi-supervised support vector machine problem (S3VM) 
as: 

w~~~,,' C [t,~. + j~' min(~j, Zj)] + II w II 

subjectto Yi (w'xt+b)+1]i ~I 1]t~O i = I, . . . ,e (6) 

W . X j - b + t,j ~ 1 t,j ~ 0 j = f + 1, ... , f + k 
-(w·xj-b)+zj~I Zj ~ O 

where C > 0 is a fixed misclassification penalty. 

Integer programming can be used to solve this problem. The basic idea is to add 
a 0 or 1 decision variable, dj , for each point Xj in the working set. This variable 
indicates the class of the point. If dj = 1 then the point is in class 1 and if d j = 0 
then the point is in class -1. This results in the following mixed integer program: 

W,~~~ ',d C [t,~. + j~l (~j + Zj)] + II w II 
subject to Yt(w·xi- b)+1]t~I 1]t~O i=I, ... ,f 

W . Xj - b + t,j + A1(I - dj ) ~ 1 t,j ~ 0 j = e + 1, ... , f + k 
-(w · xj-b)+zj+Mdj~I Zj~O dj={O , I} 

(7) 

The constant M > 0 is chosen sufficiently large such that if d j = 0 then t,j = 0 is 
feasible for any optimal wand b. Likewise if dJ = 1 then Zj = O. A globally optimal 
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Figure 2: Left = solution found by RLP; Right = solution found by S3YM 

solution to this problem can be found using CPLEX or other commercial mixed 
integer programming codes [10] provided computer resources are sufficient for the 
problem size. Using the mathematical programming modeling language AMPL [11], 
we were able to express the problem in thirty lines of code plus a data file and solve 
it using CPLEX. 

4 S3VM and Overall Risk Minimization 

An integer S3YM can be used to solve the Overall Risk Minimization problem. 
Consider the simple problem given in Figure 20 of [19]. Using RLP alone on the 
training data results in the separation shown in Figure 1. Figure 2 illustrates what 
happens when working set data is added . The training set points are shown as 
transparent triangles and hexagons. The working set points are shown as filled 
circles. The left picture in Figure 2 shows the solution found by RLP. Note that 
when the working set points are added, the resulting separation has very a small 
margin. The right picture shows the S3YM solution constructed using the unlabeled 
working set. Note that a much larger and clearer separation margin is found. These 
computational solutions are identical to those presented in [19] . 

We also tested S3YM on ten real-world data sets (eight from [14] and the bright and 
dim galaxy sets from [15]). There have been many algorithms applied successfully to 
these problems without incorporate working set information. Thus it was not clear 
a priori that S3YM would improve generalization on these data sets. For the data 
sets where no improvement is possible, we would like transduction using ORM to 
not degrade the performance of the induction via SRM approach. For each data set, 
we performed 10-fold cross-validation. For the three starred data sets, our integer 
programming solver failed due to excessive branching required within the CPLEX 
algorithm. On those data sets we randomly extracted 50 point working sets for 
each trial. The same C parameter was used for each data set in both the RLP and 
S3YM problems l . In all ten problems, S3YM never performed significantly worse 
than RLP. In three of the problems, S3YM performed significantly better. So ORM 
did not hurt generalization and in some cases it helped significantly. \Ve would 
expect this based on ORM theory. The generalization bounds for ORM depend on 
the difference between the training and working sets. If there is little difference, we 
would not expect any improvement using ORM. 

IThe formula for C was C = ;~f~>;;) with oX = .001, f is the size of training set, and k 

is the size of the working set . This formula was chosen because it worked well empirically 
for both methods. 
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Data Set Dim Points CV-size RLP S.1VM p-value 
Bright 14 2462 50* 0.02 0.018 0.343 
Cancer 9 699 70 0.036 0.034 0.591 

Cancer(Prognostic ) 30 569 57 0.035 0.033 0.678 
Dim 14 4192 50* 0.064 0.054 0.096 

Heart 13 297 30 0.173 0.160 0.104 
Housing 13 506 51 0.155 0.151 0.590 

Ionosphere 34 351 35 0.109 0.106 0.59 
Musk 166 476 48 0.173 0.173 0.999 
Pima 8 769 50* 0.220 0.222 0.678 
Sonar 60 208 21 0.281 0.219 0.045 

5 Conclusion 

\Ve introduced a semi-supervised SVM model. S3VM constructs a support vector 
machine using all the available data from both the training and working sets. We 
show how the S3VM model for I-norm linear support vector machines can be con­
verted to a mixed-integer program. One great advantage of solving S3VM using in­
teger programming is that the globall¥ optimal solution can be found using packages 
such as CPLEX. Using the integer S VM we performed an empirical investigation 
of transduction using overall risk minimization, a problem posed by Vapnik. Our 
results support the statistical learning theory results that incorporating working 
data improves generalization when insufficient training information is available. In 
every case, S3VM either improved or showed no significant difference in generaliza­
tion compared to the usual structural risk minimization approach. Our empirical 
results combined with the theoretical results in [19], indicate that transduction via 
ORM constitutes a very promising research direction. 

Many research questions remain. Since transduction via overall risk minimization 
is not always be better than the basic induction via structural risk minimization, 
can we identify a priori problems likely to benefit from transduction? The best 
methods of constructing S3VM for the 2-norm case and for nonlinear functions 
are still open questions. Kernel based methods can be incorporated into S3VM. 
The practical scalability of the approach needs to be explored. We were able to 
solve moderately-sized problems with on the order of 50 working set points using a 
general purpose integer programming code. The recent success of special purpose 
algorithms for support vector machines [16, 17, 6] indicate that such approaches 
may produce improvement for S3VM as well. 
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