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Abstract 

A key question in vision is how to represent our knowledge of previously 
encountered objects to classify new ones. The answer depends on how we 
determine the similarity of two objects. Similarity tells us how relevant 
each previously seen object is in determining the category to which a new 
object belongs. Here a dichotomy emerges. Complex notions of similar­
ity appear necessary for cognitive models and applications, while simple 
notions of similarity form a tractable basis for current computational ap­
proaches to classification. We explore the nature of this dichotomy and 
why it calls for new approaches to well-studied problems in learning. 
We begin this process by demonstrating new computational methods 
for supervised learning that can handle complex notions of similarity. 
(1) We discuss how to implement parametric met.hods that represent a 
class by its mean when using non-metric similarity functions; and (2) 
We review non-parametric methods that we have developed using near­
est neighbor classification in non-metric spaces. Point (2) , and some of 
the background of our work have been described in more detail in [8]. 

1 Supervised Learning and Non-Metric Distances 

How can one represent one 's knowledge of previously encountered objects in order 
to classify new objects? We study this question within the framework of supel vised 
learning: it is assumed that one is given a number of training objects, each labeled as 
belonging to a category; one wishes to use this experience to label new test instances 
of objects. This problem emerges both in the modeling of cognitive processes and 
in many practical applications. For example, one might want to identify risky 
applicants for credit based on past experience with clients who have proven to be 
good or bad credit risks. Our work is motivated by computer vision applications. 

Most current computational approaches to supervised learning suppose that objects 
can be thought of as vectors of numbers , or equivalently as points lying in an n­
dimensional space. They further suppose that the similarity between objects can be 
determined from the Euclidean distance between these vectors, or from some other 
simple metric . This classic notion of similarity as Euclidean or metric distance leads 
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to considerable mathematical and computational simplification . 

However, work in cognitive psychology has challenged such simple notions of sim­
ilarity as models of human judgment , while applications frequently employ non­
Euclidean distances to measure object similarity. We consider the need for similar­
ity measures that are not only non-Euclidean , but that are non-metric. We focus on 
proposed similarities that violate one requirement of a metric distance , the triangle 
inequality. This states that if we denote the distance between objects A and B 
by d(A , B) , then : VA , B , C : d(A, B) + d(B, C) ~ d(A , C) . Distances violating the 
triangle inequality must also be non-Euclidean. 

Data from cognitive psychology has demonstrated that similarity judgments may 
not be well modeled by Euclidean distances. Tversky [12] has demonstrated in­
stances in which similarity judgments may violate the triangle inequality. For ex­
ample , close similarity between Jamaica and Cuba and between Cuba and Russia 
does not imply close similarity between Jamaica and Russia (see also [10]) . Non­
metric similarity measures are frequently employed for practical reasons, too (cf. 
[5]) . In part, work in robust statistics [7] has shown that methods that will survive 
the presence of outliers, which are extraneous pieces of information or information 
containing extreme errors , must employ non-Euclidean distances that in fact violate 
the triangle inequality ; related insights have spurred the widespread use of robust 
methods in computer vision (reviewed in [5] and [9]). 

We are interested in handling a wide range of non-metric distance functions, includ­
ing those that are so complex that they must be treated as a black box . However, 
to be concrete , we will focus here on two simple examples of such distances: 

median distance: This distance assumes that objects are representable as a set 
of features whose individual differences can be measured, so that the difference 
between two objects is representable as a vector: J = (d1 , d2 , .. . dn ). The median 
distance between the two objects is just the median value in this vector. Similarly, 
one can define a k-median distance by choosing the k'th lowest element in this list. k­
median distances are often used in applications (cf. [9]) , because they are unaffected 
by the exact values of the most extreme differences between the objects . Only these 
features that are most similar determine its value . The k-median distance can 
violate the triangle inequality to an arbitrary degree (i.e. , there are no constraints 
on the pairwise distances between three points) . 

robust non-metric LP distances: Given a difference vector J, an LP distance 
has the form: 

(1) 

and is non-metric for p < 1. 

Figure 1 illustrates why these distances present significant new challenges in su­
pervised learning. Suppose that given some datapoints (two in Fig. 1) , we wish to 
classify each new point as coming from the same category as its nearest neighbor. 
Then we need to determine the Voronoi diagram generated by our data: a division 
of the plane into regions in which the points all have the same nearest neighbor. 
Fig. 1 shows how the Voronoi diagram changes with the function used to compute 
the distance between datapoints; the non-metric diagrams (rightmost three pictures 
in Fig. 1) are more complex and more likely to make non-intuitive predictions. In 
fact , very little is known about the computation of non-metric Voronoi diagrams. 

We now describe new parametric methods for supervised learning with non-metric 
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Figure 1: The Voronoi diagram for two points using, from left to right, p-distances with 
p = 2 (Euclidean), p = 1 ( Manhattan, which is still metric), the non-metric distances 
arising from p = 0.5, p = 0.2, and the min (I-median) distance. The min distance in 2-D 
illustrates the behavior of the other median distances in higher dimensions. The region of 
the plane closer to one point is shown in black, and closer to the other in white. 

distances, and review non-parametric methods that we described in [8]. 

2 Parametric methods: what should replace the mean 

Parametric methods typically represent objects as vectors in a high-dimensional 
space, and represent classes and the boundaries between them in this space us­
ing geometric constructions or probability distributions with a limited number of 
parameters. One can attempt to extend these techniques to specific non-metric 
distances, such as the median distance , or non-metric LP distances. We discuss 
the example of the mean of a class below. One can also redefine geometric ob­
jects such as linear separators, for specific non-metric distances. However, existing 
algorithms for finding such objects in Euclidean spaces will no longer be directly 
suitable, nor will theoretical results about such representations hold. Many prob­
lems are therefore open in determining how to best apply parametric supervised 
learning techniques to specific non-metric distances. 

We analyze k-means clustering where each class is represented by its average mem­
ber; new elements are then classified according to which of these prototypical exam­
ples is nearest . In Euclidean space, the mean is the point q whose sum of squared 

1 

distances to all the class members {qdr=l - (2:~1 d(ij, qi)2)2 - is minimized. 

Suppose now that our data come from a vector space where the correct distance 
is the LP distance from (1). Using the natural extension of the above definition, 
we should represent each class by the point ij whose sum of distances to all the 

1 

class members - (2:~=1 d(ij, qi)P) p - is minimal. It is now possible to show (proof 
is omitted) that for p < 1 (the non-metric cases), the exact value of every feature 
of the representative point ij must have already appeared in at least one element in 
the class. Moreover, the value of these features can be determined separately with 
complexity O(n 2 ), and total complexity of O(dn 2 ) given d features . ij is therefore 
determined by a mixture of up to d exemplars, where d is the dimension of the 
vector space. Thus there are efficient algorithms for finding the "mean" element of 
a class, even using certain non-metric distances. 

We will illustrate these results with a concrete example using the corel database, 
a commercial database of images pre-labeled by categories (such as "lions"), where 
non-metric distance functions have proven effective in determining the similarity of 
images [1] . The corel database is very large, making the use of prototypes desirable. 

We represent each image using a vector of 11 numbers describing general image 
properties, such as color histograms, as described in [1] . We consider the Euclidean 
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and L0 5 distances, and their corresponding prototypes: the mean and the LO.5_ 

prototype computed according to the result above. Given the first 45 classes , each 
containing 100 images , we found their corresponding prototypes; we then computed 
the percentage of images in each class that are closest to their own prototype, using 
either the Euclidean or the L 0.5 distance and one of the two prototypes. The results 
are the following: 

mean d existing features 

distance 25% 
Euclidean distance 20 0 

In the first column , the prototype is computed using the Euclidean mean. In the 
second column the prototype is computed using an LO 5 distance. In each row , a 
different function is used to compute the distance from each item to the cluster 
prototype. Best results are indeed obtained with the non-metric L05 distance and 
the correct prototype for this particular distance . While performance in absolute 
terms depends on how well this data clusters using distances derived from a simple 
feature vector, relative performance of different methods reveals the advantage of 
using a prototype computed with a non-metric distance. 

Another important distance function is the generalized Hamming distance: given 
two vectors of features, their distance is the number of features which are differ­
ent in the two vectors. This distance was assumed in psychophysical experiments 
which used artificial objects (Fribbles) to investigate human categorization and ob­
ject recognition [13]. In agreement with experimental results , the prototype if for 
this distance computed according to the definition above is the vector of "modal" 
features - the most common feature value computed independently at each feature. 

3 Non-Parametric Methods: Nearest Neighbors 

Non-parametric classification methods typically represent a class directly by its 
exemplars. Specifically, nearest-neighbor techniques classify new objects using only 
their distance to labeled exemplars . Such methods can be applied using any non­
metric distance function , treating the function as a black-box. However , nearest­
neighbor techniques must also be modified to apply well to non-metric distances. 
The insights we gain below from doing this can form the basis of more efficient and 
effective computer algorithms, and of cognitive models for which examples of a class 
are worth remembering. This section summarizes work described in [8]. 

Current efficient algorithms for finding the nearest neighbor of a class work only 
for metric distances [3]. The alternative of a brute-force approach, in which a new 
object is explicitly compared to every previously seen object , is desirable neither 
computationally nor as a cognitive model. A natural approach to handling this 
problem is to represent each class by a subset of its labeled examples. Such meth­
ods are called condensing algorithms. Below we develop condensing methods for 
selecting a subset of the training set which minimizes errors in the classification of 
new datapoints, taking into account the non-metric nature of the distance. 

In designing a condensing method , one needs to answer the question when is one 
object a good substitute for another? Earlier methods (e.g., [6, 2]) make use of the 
fact that the triangle inequality guarantees that when two points are similar to each 
other, their pattern of similarities to other points are not very different . Thus, in 
a metric space, there is no reason to store two similar datapoints, one can easily 
substitute for the other. Things are different in non-metric spaces. 
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Figure 2: a) Two clusters of labeled points (left) and their Voronoi diagram (right) com­
puted using the I-median (min) distance. Cluster P consists of four points (black squares) 
all close together both according to the median distance and the Euclidean distance. Clus­
ter Q consists of five points (black crosses) all having the same x coordinate, and so all 
are separated by zero distance using the median (but not Euclidean) distance. We wish to 
select a subset of points to represent each class, while changing this Voronoi diagram as 
little as possible. b) All points in class Q have zero distance to each other, using the min 
distance. So distance provides no clue as to which are interchangeable. However, the top 
points (ql, q2) have distances to the points in class P that are highly correlated with each 
other, and poorly correlated with the bottom points (q3, q4, qs). Without using correlation 
as a clue, we might represent Q with two points from the bottom (which are nearer the 
boundary with P, a factor preferred in existing approaches). This changes the Voronoi 
diagram drastically, as shown on the left. Using correlation as a clue, we select points from 
the top and bottom, changing the Voronoi diagram much less, as shown on the right. 

Specifically, what we really need to know is when two objects will have similar dis­
tances to other objects, yet unseen. We estimate this quantity using the correlation 
between two vectors: the vector of distances from one datapoint to all the other 
training data, and the vector of distances from the second datapoint to all the re­
maining training datal. It can be shown (proof is omitted) that in a Euclidean space 
the similarity between two points is the best measure of how well one can substitute 
the other, whereas in a non-metric space the aforementioned vector correlation is a 
substantially better measure. Fig. 2 illustrates this result. 

We now draw on these insights to produce concrete methods for representing classes 
in non-metric spaces, for nearest neighbor classification. We compare three algo­
rithms. The first two algorithms, random selection (cf. [6]) and boundary 
detection (e.g., [11]), represent old condensing ideas: in the first we pick a random 
selection of class representatives, in the second we use points close to class bound­
aries as representatives. The last algorithm uses new ideas: correlation selection 
includes in the representative set points which are least correlated with the other 
class members and representatives. To be fair in our comparison, all algorithms 
were constrained to select the same number of representative points for each class. 

During the simulation, each of 1000 test datapoints was classified based on: (1) all 
the data, (2) the representatives computed by each of the three algorithms. For 
each algorithm, the test is successful if the two methods (classification based on all 
the data and based on the chosen representatives) give the same results. Fig. 3a-c 
summarizes representative results of our simulations. See [8] for details. 

IGiven two datapoints X, Y and x, y ERn, where x is the vector of distances from X 
to all the other training points and y is the corresponding vector for Y, we measure the 
correlation between the datapoints using the statistical correlation coefficient between x, y: 
corr(X, Y) = corr(x, y) = �~�.� Y-I-'y, where JJx, JJy denote the mean of x, y respectively, 

CTx CTy 

and frx , fry denote the standard deviation of x, y respectively. 










