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Abstract 

The hierarchical representation of data has various applications in do
mains such as data mining, machine vision, or information retrieval. In 
this paper we introduce an extension of the Expectation-Maximization 
(EM) algorithm that learns mixture hierarchies in a computationally ef
ficient manner. Efficiency is achieved by progressing in a bottom-up 
fashion, i.e. by clustering the mixture components of a given level in the 
hierarchy to obtain those of the level above. This cl ustering requires onl y 
knowledge of the mixture parameters, there being no need to resort to 
intermediate samples. In addition to practical applications, the algorithm 
allows a new interpretation of EM that makes clear the relationship with 
non-parametric kernel-based estimation methods, provides explicit con
trol over the trade-off between the bias and variance of EM estimates, and 
offers new insights about the behavior of deterministic annealing methods 
commonly used with EM to escape local minima of the likelihood. 

1 Introduction 

There are many practical applications of statistical learning where it is useful to characterize 
data hierarchically. Such characterization can be done according to either top-down or 
bottom-up strategies. While the former start by generating a coarse model that roughly 
describes the entire space, and then successively refine the description by partitioning the 
space and generating sub-models for each of the regions in the partition; the later start 
from a fine description, and successively agglomerate sub-models to generate the coarser 
descriptions at the higher levels in the hierarchy. 

Bottom-up strategies are particularly useful when not all the data is available at once, or 
when the dataset is so big that processing it as whole is computationally infeasible. This 
is the case of machine vision tasks such as object recognition, or the indexing of video 
databases. In object recognition, it is many times convenient to determine not only which 
object is present in the scene but also its pose [2], a goal that can be attained by a hierarchical, 
description where at the lowest level a model is learned for each object pose and all pose 
models are then combined into a generic model at the top level of the hierarchy. Similarly, 
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for video indexing, one may be interested in learning a description for each frame and 
then combine these into shot descriptions or descriptions for some other sort of high level 
temporal unit [6). 

In this paper we present an extension of the EM algorithm [I) for the estimation of hierar
chical mixture models in a bottom-up fashion. It turns out that the attainment of this goal 
has far more reaching consequences than the practical applications above. In particular, 
because a kernel density estimate can be seen as a limiting case ofa mixture model (where 
a mixture component is superimposed on each sample), this extension establishes a direct 
connection between so-called parametric and non-parametric density estimation methods 
making it possible to exploit results from the vast non-parametric smoothing literature [4) 
to improve the accuracy of parametric estimates. Furthennore, the original EM algorithm 
becomes a particular case of the one now presented, and a new intuitive interpretation be
comes available for an important variation of EM (known as deterministic annealing) that 
had previously been derived from statistical physics. With regards to practical applications, 
the algorithm leads to computationally efficient methods for estimating density hierarchies 
capable of describing data at different resolutions. 

2 Hierarchical mixture density estimation 

Our model consists of a hierarchy of mixture densities, where the data at a given level is 
described by 

c l 

P(X) = L 1I"~p(Xlz~ = I , Md, (I) 
k = 1 

where 1 is the level in the hierarchy (l = 0 providing the coarsest characterization of the 
data), MI the mixture model at this level, Cl the number of mixture components that 
compose it, 11"~ the prior probability of the kth component, and z~ a binary variable that 
takes the value 1 if and only if the sample X was drawn from this component. The only 
restriction on the model is that if node j of levell + 1 is a child of node i of levell, then 

11"1+1 = 11"1+111"1 
J jlk k' 

(2) 

where k is the parent of j in the hierarchy of hidden variables. 

The basic problem is to compute the mixture parameters of the description at levell given 
the knowledge of the parameters at level 1 + 1. This can also be seen as a problem of 
clustering mixture components. A straightforward solution would be to draw a sample 
from the mixture density at levell + 1 and simply run EM with the number of classes of 
the level 1 to estimate the corresponding parameters. Such a solution would have at least 
two major limitations. First, there would be no guarantee that the constraint of equation (2) 
would be enforced, i.e. there would be no guarantee of structure in the resulting mixture 
hierarchy, and second it would be computationally expensive, as all the models in the 
hierarchy would have to be learned from a large sample. In the next section, we show that 
this is really not necessary. 

3 Estimating mixture hierarchies 

The basic idea behind our approach is, instead of generating a real sample from the mixture 
model at level L + 1, to consider a virtual sample generated from the same model, use EM 
to find the expressions for the parameters of the mixture model of levell that best explain 
this virtual sample, and establish a closed-fonn relationship between these parameters and 
those of the model at level 1 + I. For this, we start by considering a virtual sample 
X = {XI, .. . , X C l+ l } from ; \.11+1, where each of the Xi is a virtual sample from one of 
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the C'+ 1 components of this model, with size Mi = 11'! N, where N is the total number of 
virtual points. 

We next establish the likelihood for the virtual sample under the model M" For this, as is 
usual in the EM literature, we assume that samples from different blocks are independent, 
Le. 

C 1+1 

P(XIM,) = II P(XiIM,), (3) 
i=1 

but, to ensure that the constraint of equation (2) is enforced, samples within the same block 
are assigned to the same component of M,. Assuming further that, given the knowledge 
of the assignment the samples are drawn independently from the corresponding mixture 
component, the likelihood of each block is given by 

c 1 c 1 M i 

P(XiIMd = 2: lI'~P(Xilzij = I,M,) = 2: 11'} II p(XrlZij = I,M,), (4) 
j = 1 j = 1 m = 1 

where Zij = Z!+I z; is a binary variable with value one if and only if the block Xi is assigned 
to the jth component of M" and xr is the mth data point in Xi. Combining equations (3) 
and (4) we obtain the incomplete data likelihood, under M" for the whole sample 

C 1+1 c 1 M. 

P(XIM,) = II 2: 11'; II p(XrlZij = I,M,). (5) 
i = 1 j = 1 m = 1 

This equation is similar to the incomplete data likelihood of standard EM, the main differ
ence being that instead of having an hidden variable for each sample point, we now have 
one for each sample block. The likelihood of the complete data is given by 

C 1+1 c 1 

P(X, ZIM,) = II II [lI'~P(Xilzij = 1, M,)f·i , 
i = 1 j = 1 

where Z is a vector containing all the Zij, and the log-likelihood becomes 

C 1+1 c 1 

log P(X, ZIM,) = 2: 2: Zij 10g(1I';P(Xilzij = 1, M,). 
i = 1 j = 1 

Relying on EM to estimate the parameters of M, leads to the the following E-step 

(6) 

(7) 

_ _ _ P(Xi I Zij = I, M,)lI'; 
h ij E[zijIXi,M,]-P(zij-lIXi , M,)-~ P(X .I. -I lA) I' (8) 

L..k , Zzk - , l VI/ lI'k 

The key quantity to compute is therefore P (Xi I Zij = I, M,). Taking its logarithm 

1 M. 

10gP(Xilzij = I,M,) Mi[M . 2:logP(xrlzij = I,M,)] 
, i = 1 

MiEM 1+1., [log P(XIZij = 1, M,)], (9) 

where we have used the law of large numbers, and EM 1+1 •• [x] is the expected value of x 
according the ith mixture component of M'+ 1 (the one from which Xi was drawn). This 
is an easy computation for most densities commonly used in mixture modeling. It can be 
shown [5] that for the Gaussian case it leads to 

[ I .L { ~l _1~ l+I}]M. g(J1.i+ 1 ,/L~ , E~)e-~trace (~J)~' 7r~ 
(10) 
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where 9(x, J1., E) is the expression for a Gaussian with mean J1. and covariance E. 

The M-step consists of maximizing 

C I+1 c l 

Q = L L hij 10g(1T~P(Xilzij = 1, Md) 
i = 1 j = 1 

609 

(II) 

subject to the constraint E j 7r~ = I. Once again, this is a relatively simple task for 
common mixture models and in [5] we show that for the Gaussian case it leads to the 
following parameter update equations 

Ei hij MiJ1.~+ 1 

Ei h ij Mi 

(12) 

(3) 

E.~ .. M . [LhijMiE~+1 + LhijMi(J1.~+I-J1.;)(J1.!+1 -J1.;f] .(4) 
, 'J , i i 

Notice that neither equation (10) nor equations (12) to (14) depend explicitly on the un
derlying sample Xi and can be computed directly from the parameters of Ml+l. The 
algorithm is thus very efficient from a computational standpoint as the number of mixture 
components in Ml+ 1 is typically much smaller than the size of the sample at the bottom of 
the hierarchy. 

4 Relationships with standard EM 

There are interesting relationships between the algorithm derived above and the standard 
EM procedure. The first thing to notice is that by making Mi = I and E~+ 1 = 0, the E and 
M-steps become those obtained by applying standard EM to the sample composed of the 
points J1.~+1 . 
Thus, standard EM can be seen as a particular case of the new algorithm, that learns a two 
level mixture hierarchy. An initial estimate is first obtained at the bottom of this hierarchy 
by placing a Gaussian with zero covariance on top of each data point, the model at the 
second level being then computed from this estimate. The fact that the estimate at the 
bottom level is nothing more than a kernel estimate with zero bandwidth suggests that other 
choices of the kernel bandwidth may lead to better overall EM estimates. 

Under this interpretation, the E~+I become free parameters that can be used to control the 
smoothness of the density estimates and the whole procedure is equivalent to the composition 
of three steps: I) find the kernel density estimate that best fits the sample under analysis, 2) 
draw a larger virtual sample from that density, and 3) compute EM estimates from this larger 
sample. In section 5, we show that this can leave to significant improvements in estimation 
accuracy, particularly when the initial sample is small, the free parameters allowing explicit 
control over the trade-off between the bias and variance of the estimator. 

Another interesting relationship between the hierarchical method and standard EM can 
be derived by investigating the role of the size of the underlying virtual sample (which 
determines Mi) on the estimates. Assuming Mi constant, Mi = M, Vi, it factors out of 
all summations in equations (12) to (14), the contributions of numerator and denominator 
canceling each other. In this case, the only significance of the choice of M is its impact on 
the E-step. Assuming, as before, that E~+I = 0 we once again have the EM algorithm, but 
where the class-conditional likelihoods of the E-step are now raised to the Mth power. If 
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M is seen as the inverse of temperature, both the E and M steps become those of standard 
EM under deterministic annealing (DA) I [3] . 

The DA process is therefore naturally derived from our hierarchical formulation, which 
gives it a new interpretation that is significantly simpler and more intuitive than those 
derived from statistical physics. At the start of the process M is set to zero, i.e. no virtual 
samples are drawn from the Gaussian superimposed on the real dataset, and there is no 
virtual data. Thus, the assignments hij of the E-step simply become the prior mixing 
proportions 11"; and the M-step simply sets the parameters of all Gaussians in the model to 
the sample mean and sample covariance of the real sample. As M increases, the number 
of virtual points drawn from each Gaussian also increases and for M = 1 we have a single 
point that coincides with the point on the real training sample. We therefore obtain the 
standard EM equations. Increasing M further will make the E-step assignments harder (in 
the limit of M = 00 each point is assigned to a single mixture component) because a larger 
virtual probability mass is attached to each real point leading to much higher certainty with 
regards to the reliability of the assignment. 

Overall, while in the beginning of the process the reduced size of the virtual sample allows 
the points in the real sample to switch from mixture to mixture easily, as M is increased 
the switching becomes much less likely. The "exploratory" nature of the initial iterations 
drives the process towards solutions that are globally good, therefore allowing it to escape 
local minima. 

5 Experimental results 

In this section, we present experimental results that illustrate the properties of the hierar
chical EM algorithm now proposed. We start by a simple example that illustrates how the 
algorithm can be used to estimate hierarchical mixtures. 
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Figure I: Mixture hierarchy derived from the model shown in the left. The plot relative to each 
level of the hierarchy is superimposed on a sample drawn from this model. Only the one-standard 
deviation contours are shown for each Gaussian. 

The plot on the left of Figure 1 presents a Gaussian mixture with 16 uniformly weighted 
components. A sample with 1000 points was drawn from this model, and the algorithm 
used to find the best descriptions for it at three resolutions (mixtures with 16, 4, and 2 
Gaussian). These descriptions are shown in the figure. Notice how the mixture hierarchy 
naturally captures the various levels of structure exhibited by the data. 

This example suggests how the algorithm could be useful for applications such as object 
recognition or image retrieval. Suppose that each of the Gaussians in the leftmost plot of 

IDA is a technique drawn from analogies with statistical physics that avoids local maxima of 
the likelihood function (in which standard EM can get trapped) by perfonning a succession of 
optimizations at various temperatures [31. 






