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Abstract 

In macaque inferotemporal cortex (IT), neurons have been found to re­
spond selectively to complex shapes while showing broad tuning ("in­
variance") with respect to stimulus transformations such as translation 
and scale changes and a limited tuning to rotation in depth. Training 
monkeys with novel, paperclip-like objects, Logothetis et al. 9 could in­
vestigate whether these invariance properties are due to experience with 
exhaustively many transformed instances of an object or if there are mech­
anisms that allow the cells to show response invariance also to previously 
unseen instances of that object. They found object-selective cells in an­
terior IT which exhibited limited invariance to various transformations 
after training with single object views. While previous models accounted 
for the tuning of the cells for rotations in depth and for their selectiv­
ity to a specific object relative to a population of distractor objects,14,1 
the model described here attempts to explain in a biologically plausible 
way the additional properties of translation and size invariance. Using 
the same stimuli as in the experiment, we find that model IT neurons 
exhibit invariance properties which closely parallel those of real neurons. 
Simulations show that the model is capable of unsupervised learning of 
view-tuned neurons. 

We thank Peter Dayan, Marcus Dill, Shimon Edelman, Nikos Logothetis, Jonathan Mumick and 
Randy O'Reilly for useful discussions and comments. 



216 M. RiesenhuberandT. Poggio 

1 Introduction 

Neurons in macaque inferotemporal cortex (IT) have been shown to respond to views of 
complex objects,8 such as faces or body parts, even when the retinal image undergoes size 
changes over several octaves, is translated by several degrees of visual angle7 or rotated in 
depth by a certain amount9 (see [13] for a review). 

These findings have prompted researchers to investigate the physiological mechanisms 
underlying these tuning properties. The original model 14 that led to the physiological 
experiments of Logothetis et al. 9 explains the behavioral view invariance for rotation in 
depth through the learning and memory of a few example views, each represented by a 
neuron tuned to that view. Invariant recognition for translation and scale transformations 
have been explained either as a result of object-specific learning4 or as a result of a 
normalization procedure ("shifter") that is applied to any image and hence requires only 
one object-view for recognition. 12 

A problem with previous experiments has been that they did not illuminate the mechanism 
underlying invariance since they employed objects (e.g., faces) with which the monkey was 
quite familiar, having seen them numerous times under various transformations. Recent 
experiments by Logothetis et al. 9 addressed this question by training monkeys to recog­
nize novel objects ("paperclips" and amoeba-like objects) with which the monkey had no 
previous visual experience. After training, responses of IT cells to transformed versions of 
the training stimuli and to distractors of the same type were collected. Since the views the 
monkeys were exposed to during training were tightly controlled, the paradigm allowed to 
estimate the degree of invariance that can be extracted from just one object view. 

In partiCUlar, Logothetis et al. 9 tested the cells' responses to rotations in depth, translation 
and size changes. Defining "in variance" as yielding a higher response to test views than 
to distractor objects, they report9 ,10 an average rotation invariance over 30°, translation 
invariance over ±2°, and size invariance of up to ±1 octave around the training view. 

These results establish that there are cells showing some degree of invariance even after 
training with just one object view, thereby arguing against a completely learning-dependent 
mechanisms that requires visual experience with each transformed instance that is to be 
recognized. On the other hand, invariance is far from perfect but rather centered around the 
object views seen during training. 

2 The Model 

Studies of the visual areas in the ventral stream of the macaque visual system8 show a 
tendency for cells higher up in the pathway (from VI over V2 and V4 to anterior and 
posterior IT) to respond to increasingly complex objects and to show increasing invariance 
to transformations such as translations, size changes or rotation in depth.13 

We tried to construct a model that explains the receptive field properties found in the 
experiment based on a simple feedforward model. Figure 1 shows a cartoon of the model: 
A retinal input pattern leads to excitation of a set of "VI" cells, in the figure abstracted 
as having derivative-of-Gaussian receptive field profiles. These "VI" cells are tuned to 
simple features and have relatively small receptive fields. While they could be cells from a 
variety of areas, e.g., VI or V2 (cf. Discussion), for simplicity, we label them as "VI" cells 
(see figure). Different cells differ in preferred feature, e.g., orientation, preferred spatial 
frequency (scale), and receptive field location. "VI" cells of the same type (i.e., having 
the same preferred stimulus, but of different preferred scale and receptive field location) 
feed into the same neuron in an intermediate layer. These intermediate neurons could be 
complex cells in VI or V2 or V4 or even posterior IT: we label them as "V4" cells, in the 
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same spirit in which we labeled the neurons feeding into them as "VI" units. Thus, a "V4" 
cell receives inputs from "VI" cells over a large area and different spatial scales ([8] reports 
an average receptive field size in V 4 of 4.4° of visual angle, as opposed to about I ° in VI; 
for spatial frequency tuning, [3] report an average FWHM of 2.2 octaves, compared to 1.4 
(foveally) to 1.8 octaves (parafoveally) in VI 5). These "V4" cells in turn feed into a layer 
of "IT" neurons, whose invariance properties are to be compared with the experimentally 
observed ones. 

Retina 

Figure 1: Cartoon of the model. See text for explanation. 

A crucial element of the model is the mechanism an intermediate neuron uses to pool the 
activities of its afferents. From the computational point of view, the intermediate neurons 
should be robust feature detectors, i.e., measure the presence of specific features without 
being confused by clutter and context in the receptive field. More detailed considerations 
(Riesenhuber and Poggio, in preparation) show that this cannot be achieved with a response 
function that just summates over all the afferents (cf. Results). Instead, intermediate 
neurons in our model perform a "max" operation (akin to a "Winner-Take-AII") over all 
their afferents, i.e., the response of an intermediate neuron is determined by its most strongly 
excited afferent. This hypothesis appears to be compatible with recent data,15 that show 
that when two stimuli (gratings of different contrast and orientation) are brought into the 
recepti ve field of a V 4 cell, the cell's response tends to be close to the stronger of the two 
individual responses (instead of e.g., the sum as in a linear model). 
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Thus, the response function 0i of an intennediate neuron i to stimulation with an image v 
IS 

(1) 

with Ai the set of afferents to neuron i, aU) the receptive field center of afferent j, v a(j) the 
(square-nonnalized) image patch centered at aU) that corresponds in size to the receptive 
field, ~j (also square-nonnalized) of afferent j and "." the dot product operation. 

Studies have shown that V 4 neurons respond to features of "intennediate" complexity 
such as gratings, corners and crosses.8 In V4 the receptive fields are comparatively large 
(4.40 of visual angle on average8 ), while the preferred stimuli are usually much smaller.3 

Interestingly, cells respond independently of the location of the stimulus within the receptive 
field. Moreover, average V 4 receptive field size is comparable to the range of translation 
invariance of IT cells (:S ±2°) observed in the experiment.9 For afferent receptive fields 
~j, we chose features similar to the ones found for V 4 cells in the visual system:8 bars 
(modeled as second derivatives of Gaussians) in two orientations, and "corners" of four 
different orientations and two different degrees of obtuseness. This yielded a total of lO 
intennediate neurons. This set of features was chosen to give a compact and biologically 
plausible representation. Each intennediate cell received input from cells with the same 
type of preferred stimulus densely covering the visual field of 256 x 256 pixels (which thus 
would correspond to about 4.40 of visual angle, the average receptive field size in V48 ), 

with receptive field sizes of afferent cells ranging from 7 to 19 pixels in steps of 2 pixels. 
The features used in this paper represent the first set of features tried, optimizing feature 
shapes might further improve the model's performance. 

The response tj oftop layer neuron j with connecting weights Wj to the intennediate layer 
was set to be a Gaussian, centered on Wj, 

tj = ~exp (_IIO;~jI12) 
271'0'2 0' 

(2) 

where ° is the excitation of the intennediate layer and 0' the variance of the Gaussian, which 
was chosen based on the distribution of responses (for section 3.1) or learned (for section 
3.2). 

The stimulus images were views of 21 randomly generated "paperclips" of the type used in 
the physiology experiment.9 Distractors were 60 other paperclip images generated by the 
same method. Training size was 128 x 128 pixels. 

3 Results 

3.1 Invariance of Representation 

In a first set of simulations we investigated whether the proposed model could indeed 
account for the observed invariance properties. Here we assumed that connection strengths 
from the intennediate layer cells to the top layer had already been learned by a separate 
process, allowing us to focus on the tolerance of the representation to the above-mentioned 
transformations and on the selectivity of the top layer cells. 

To {,·,tablish the tuning properties of view-tuned model neurons, the connections Wj between 
the intermediate layer and top layer unit j were set to be equal to the excitation 0training in 
the intermediate layer caused by the training view. Figure 2 shows the "tuning curve" for 
rotation in depth and Fig. 3 the response to changes in stimulus size of one such neuron . The 
neuron shows rotation invariance (i.e., producing a higher response than to any distractor) 
over about 440 and invariance to scale changes over the whole range tested. For translation 
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Figure 2: Responses of a sample top layer neuron to different views of the training stimulus and to distractors. 
The left plot shows the rotation tuning curve, with the training view (900 view) shown in the middle image over 
the plot. The neighboring images show the views of the paperclip at the borders of the rotation tuning curve, 
which are located where the response to the rotated clip falls below the response to the best distractor (shown in 
the plot on the right). The neuron exhibits broad rotation tuning over more than 40° . 

(not shown), the neuron showed invariance over translations of ±96 pixels around the center 
in any direction, corresponding to ± 1.7° of visual angle. 

The average invariance ranges for the 21 tested paperclips were 35° of rotation angle, 2.9 
octaves of scale invariance and ± 1.80 of translation invariance. Comparing this to the 
experimentally observed10 300 ,2 octaves and ±2°, resp., shows a very good agreement of 
the invariance properties of model and experimental neurons. 

3.2 Learning 

In the previous section we assumed that the connections from the intermediate layer to a 
view-tuned neuron in the top layer were pre-set to appropriate values. In this section, we 
investigate whether the system allows unsupervised learning of view-tuned neurons. 

Since biological plausibility of the learning algorithm was not our primary focus here, 
we chose a general, rather abstract learning algorithm, viz. a mixture of Gaussians model 
trained with the EM algorithm. Our model had four neurons in the top level, the stimuli were 
views of four paperclips, randomly selected from the 21 paperclips used in the previous 
experiments. For each clip, the stimulus set contained views from 17 different viewpoints, 
spanning 340 of viewpoint change. Also, each clip was included at 11 different scales in 
the stimulus set, covering a range of two octaves of scale change. 

Connections Wi and variances O'i, i = 1, ... ,4, were initialized to random values at the 
beginning of training. After a few iterations of the EM algorithm (usually less than 30), a 
stationary state was reached, in which each model neuron had become tuned to views of one 
paperclip: For each paperclip, all rotated and scaled views were mapped to (i.e., activated 
most strongly) the same model neuron and views of different paperclips were mapped to 
different neurons. Hence, when the system is presented with multiple views of different 
objects, receptive fields of top level neurons self-organize in such a way that different 
neurons become tuned to different objects. 
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Figure 3: Responses of the same top layer neuron as in Fig. 2 to scale changes of the training stimulus and to 
distractors. The left plot shows the size tuning curve, with the training size (128 x 128 pixels) shown in the 
middle image over the plot. The neighboring images show scaled versions of the paperclip. Other elements as in 
Fig. 2. The neuron exhibits scale invariance over more than 2 octaves. 

4 Discussion 

Object recognition is a difficult problem because objects must be recognized irrespective 
of position, size, viewpoint and illumination. Computational models and engineering 
implementations have shown that most of the required invariances can be obtained by 
a relatively simple learning scheme, ba<;ed on a small set of example views.14,17 Quite 
sensibly, the visual system can also achieve some significant degree of scale and translation 
invariance from just one view. Our simulations show that the maximum response function is 
a key component in the performance ofthe model. Without it - i.e., implementing a direct 
convolution of the filters with the input images and a subsequent summation - invariance 
to rotation in depth and translation both decrease significantly. Most dramatically, however, 
invariance to scale changes is abolished completely, due to the strong changes in afferent 
cell activity with changing stimulus size. Taking the maximum over the afferents, as in our 
model, always picks the best matching filter and hence produces a more stable response. We 
expect a maximum mechanism to be essential for recognition-in-context, a more difficult 
task and much more common than the recognition of isolated objects studied here and in 
the related psychophysical and physiological experiments. 

The recognition of a specific paperclip object is a difficult, subordinate level classification 
task. It is interesting that our model sol ves it well and with a performance closely resembling 
the physiological data on the same task. The model is a more biologically plausible and 
complete model than previous ones14, 1 but it is still at the level of a plausibility proof rather 
than a detailed physiological model. It suggests a maximum-like response of intermediate 
cells as a key mechanism for explaining the properties of view-tuned IT cells, in addition 
to view-based representations (already described in (1,9]). 

Neurons in the intermediate layer currently use a very simple set of features. While this 
appears to be adequate for the class of paperclip objects, more complex filters might be 
necessary for more complex stimulus classes like faces. Consequently, future work will 
aim to improve the filtering step ofthe model and to test it on more real world stimuli. One 
can imagine a hierarchy of cell layers, similar to the "S" and "C" layers in Fukushima's 




