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Abstract 

A simple but powerful modification of the standard Gaussian dis
tribution is studied. The variables of the rectified Gaussian are 
constrained to be nonnegative, enabling the use of nonconvex en
ergy functions. Two multimodal examples, the competitive and 
cooperative distributions, illustrate the representational power of 
the rectified Gaussian. Since the cooperative distribution can rep
resent the translations of a pattern, it demonstrates the potential 
of the rectified Gaussian for modeling pattern manifolds. 

1 INTRODUCTION 

The rectified Gaussian distribution is a modification of the standard Gaussian in 
which the variables are constrained to be nonnegative. This simple modification 
brings increased representational power, as illustrated by two multimodal examples 
of the rectified Gaussian, the competitive and the cooperative distributions. The 
modes of the competitive distribution are well-separated by regions of low probabil
ity. The modes of the cooperative distribution are closely spaced along a nonlinear 
continuous manifold. Neither distribution can be accurately approximated by a 
single standard Gaussian. In short, the rectified Gaussian is able to represent both 
discrete and continuous variability in a way that a standard Gaussian cannot. 

This increased representational power comes at the price of increased complexity. 
While finding the mode of a standard Gaussian involves solution of linear equations, 
finding the modes of a rectified Gaussian is a quadratic programming problem. 
Sampling from a standard Gaussian can be done by generating one dimensional 
normal deviates, followed by a linear transformation. Sampling from a rectified 
Gaussian requires Monte Carlo methods. Mode-finding and sampling algorithms 
are basic tools that are important in probabilistic modeling. 

Like the Boltzmann machine[l], the rectified Gaussian is an undirected graphical 
model. The rectified Gaussian is a better representation for probabilistic modeling 
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Figure 1: Three types of quadratic energy functions. (a) Bowl (b) Trough (c) Saddle 

of continuous-valued data. It is unclear whether learning will be more tractable for 
the rectified Gaussian than it is for the Boltzmann machine. 

A different version of the rectified Gaussian was recently introduced by Hinton and 
Ghahramani[2, 3]. Their version is for a single variable, and has a singularity at 
the origin designed to produce sparse activity in directed graphical models. Our 
version lacks this singularity, and is only interesting in the case of more than one 
variable, for it relies on undirected interactions between variables to produce the 
multimodal behavior that is of interest here. 

The present work is inspired by biological neural network models that use contin
uous dynamical attractors[4]. In particular, the energy function of the cooperative 
distribution was previously studied in models of the visual cortex[5], motor cortex[6], 
and head direction system[7]. 

2 ENERGY FUNCTIONS: BOWL, TROUGH, AND 
SADDLE 

The standard Gaussian distribution P(x) is defined as 

P(x) 

E(x) = 

Z -l -{3E(;r:) e , 

1 _xT Ax - bTx 2 . 

(1) 

(2) 

The symmetric matrix A and vector b define the quadratic energy function E(x). 
The parameter (3 = lIT is an inverse temperature. Lowering the temperature 
concentrates the distribution at the minimum of the energy function. The prefactor 
Z normalizes the integral of P(x) to unity. 

Depending on the matrix A, the quadratic energy function E(x) can have different 
types of curvature. The energy function shown in Figure l(a) is convex. The mini
mum of the energy corresponds to the peak of the distribution. Such a distribution 
is often used in pattern recognition applications, when patterns are well-modeled 
as a single prototype corrupted by random noise. 

The energy function shown in Figure 1 (b) is flattened in one direction. Patterns 
generated by such a distribution come with roughly equal1ikelihood from anywhere 
along the trough. So the direction of the trough corresponds to the invariances of 
the pattern. Principal component analysis can be thought of as a procedure for 
learning distributions of this form. 

The energy function shown in Figure 1 (c) is saddle-shaped. It cannot be used 
in a Gaussian distribution, because the energy decreases without limit down the 
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sides of the saddle, leading to a non-normalizable distribution. However, certain 
saddle-shaped energy functions can be used in the rectified Gaussian distribution, 
which is defined over vectors x whose components are all nonnegative. The class of 
energy functions that can be used are those where the matrix A has the property 
xT Ax > 0 for all x > 0, a condition known as copositivity. Note that this set of 
matrices is larger than the set of positive definite matrices that can be used with 
a standard Gaussian. The nonnegativity constraints block the directions in which 
the energy diverges to negative infinity. Some concrete examples will be discussed 
shortly. The energy functions for these examples will have multiple minima, and 
the corresponding distribution will be multimodal, which is not possible with a 
standard Gaussian. 

3 MODE-FINDING 

Before defining some example distributions, we must introduce some tools for an
alyzing them. The modes of a rectified Gaussian are the minima of the energy 
function (2), subject to nonnegativity constraints. At low temperatures, the modes 
of the distribution characterize much of its behavior. 

Finding the modes of a rectified Gaussian is a problem in quadratic programming. 
Algorithms for quadratic programming are particularly simple for the case of non
negativity constraints. Perhaps the simplest algorithm is the projected gradient 
method, a discrete time dynamics consisting of a gradient step followed by a recti
fication 

(3) 

The rectification [x]+ = max(x, 0) keeps x within the nonnegative orthant (x ~ 0). 
If the step size 7J is chosen correctly, this algorithm can provably be shown to 
converge to a stationary point of the energy function[8]. In practice, this stationary 
point is generally a local minimum. 

Neural networks can also solve quadratic programming problems. We define the 
synaptic weight matrix W = I - A, and a continuous time dynamics 

x+x = [b+ Wx]+ (4) 

For any initial condition in the nonnegative orthant, the dynamics remains in the 
nonnegative orthant, and the quadratic function (2) is a Lyapunov function of the 
dynamics. 

Both of these methods converge to a stationary point of the energy. The gradient 
of the energy is given by 9 = Ax - b. According to the Kiihn-Tucker conditions, a 
stationary point must satisfy the conditions that for all i, either gi = 0 and Xi > 0, 
or gi > 0 and Xi = O. The intuitive explanation is that in the interior of the 
constraint region, the gradient must vanish, while at the boundary, the gradient 
must point toward the interior. For a stationary point to be a local minimum, the 
Kiihn-Tucker conditions must be augmented by the condition that the Hessian of 
the nonzero variables be positive definite. 

Both methods are guaranteed to find a global minimum only in the case where A is 
positive definite, so that the energy function (2) is convex. This is because a convex 
energy function has a unique minimum. Convex quadratic programming is solvable 
in polynomial time. In contrast, for a nonconvex energy function (indefinite A), it 
is not generally possible to find the global minimum in polynomial time, because of 
the possible presence of local minima. In many practical situations, however, it is 
not too difficult to find a reasonable solution. 
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Figure 2: The competitive distribution for two variables. (a) A non-convex energy 
function with two constrained minima on the x and y axes. Shown are contours of 
constant energy, and arrows that represent the negative gradient of the energy. (b) 
The rectified Gaussian distribution has two peaks. 

The rectified Gaussian happens to be most interesting in the nonconvex case, pre
cisely because of the possibility of multiple minima. The consequence of multiple 
minima is a multimodal distribution, which cannot be well-approximated by a stan
dard Gaussian. We now consider two examples of a multimodal rectified Gaussian. 

4 COMPETITIVE DISTRIBUTION 

The competitive distribution is defined by 

Aij -dij + 2 (5) 

bi = 1; (6) 

We first consider the simple case N = 2. Then the energy function given by 

X2 +y2 
E(x,y)=- 2 +(x+y)2_(x+y) (7) 

has two constrained minima at (1,0) and (0,1) and is shown in figure 2(a). It 
does not lead to a normalizable distribution unless the nonnegativity constraints are 
imposed. The two constrained minima of this nonconvex energy function correspond 
to two peaks in the distribution (fig 2(b)). While such a bimodal distribution 
could be approximated by a mixture of two standard Gaussians, a single Gaussian 
distribution cannot approximate such a distribution. In particular, the reduced 
probability density between the two peaks would not be representable at all with a 
single Gaussian. 

The competitive distribution gets its name because its energy function is similar 
to the ones that govern winner-take-all networks[9]. When N becomes large, the 
N global minima of the energy function are singleton vectors (fig 3), with one 
component equal to unity, and the rest zero. This is due to a competitive interaction 
between the components. The mean of the zero temperature distribution is given 
by 

(8) 

The eigenvalues of the covariance 
1 1 

(XiXj) - (Xi)(Xj) = N dij - N2 (9) 
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Figure 3: The competitive distribution for N = 10 variables. (a) One mode (zero 
temperature state) of the distribution. The strong competition between the vari
ables results in only one variable on. There are N modes of this form, each with a 
different winner variable. (b) A sample at finite temperature (13 ~ 110) using Monte 
Carlo sampling. There is still a clear winner variable. (c) Sample from a standard 
Gaussian with matched mean and covariance. Even if we cut off the negative values 
this sample still bears little resemblance to the states shown in (a) and (b), since 
there is no clear winner variable. 

all equal to 1/ N, except for a single zero mode. The zero mode is 1, the vector of 
all ones, and the other eigenvectors span the N - 1 dimensional space perpendicular 
to 1. Figure 3 shows two samples: one (b) drawn at finite temperature from the 
competitive distribution, and the other (c) drawn from a standard Gaussian distri
bution with the same mean and covariance. Even if the sample from the standard 
Gaussian is cut so negative values are set to zero the sample does not look at all 
like the original distribution. Most importantly a standard Gaussian will never be 
able to capture the strongly competitive character of this distribution. 

5 COOPERATIVE DISTRIBUTION 

To define the cooperative distribution on N variables, an angle fh = 27ri/N is 
associated with each variable Xi, so that the variables can be regarded as sitting on 
a ring. The energy function is defined by 

1 4 
Aij 6ij + N - N COS(Oi - OJ) (10) 

bi = 1; (11) 

The coupling Aij between Xi and X j depends only on the separation Oi - 03. between 
them on the ring. 

The minima, or ground states, of the energy function can be found numerically by 
the methods described earlier. An analytic calculation of the ground states in the 
large N limit is also possible[5]. As shown in Figure 4(a), each ground state is a 
lump of activity centered at some angle on the ring. This delocalized pattern of 
activity is different from the singleton modes of the competitive distribution, and 
arises from the cooperative interactions between neurons on the ring. Because the 
distribution is invariant to rotations of the ring (cyclic permutations of the variables 
xd, there are N ground states, each with the lump at a different angle. 

The mean and the covariance of the cooperative distribution are given by 

(Xi) = const 

(XiXj) - (Xi}(Xj) = C(Oi - OJ) 

(12) 

(13) 

A given sample of x, shown in Figure 4(a), does not look anything like the mean, 
which is completely uniform. Samples generated from a Gaussian distribution with 
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Figure 4: The cooperative distribution for N = 25 variables. (a) Zero temperature 
state. A cooperative interaction between the variables leads to a delocalized pattern 
of activity that can sit at different locations on the ring. (b) A finite temperature 
(/3 = 50) sample. (c) A sample from a standard Gaussian with matched mean and 
covariance. 

the same mean and covariance look completely different from the ground states of 
the cooperative distribution (fig 4(c)). 

These deviations from standard Gaussian behavior reflect fundamental differences 
in the underlying energy function. Here the energy function has N discrete minima 
arranged along a ring. In the limit of large N the barriers between these minima 
become quite small. A reasonable approximation is to regard the energy function 
as having a continuous line of minima with a ring geometry[5] . In other words, the 
energy surface looks like a curved trough, similar to the bottom of a wine bottle. 
The mean is the centroid of the ring and is not close to any minimum. 

The cooperative distribution is able to model the set of all translations of the lump 
pattern of activity. This suggests that the rectified Gaussian may be useful in 
invariant object recognition, in cases where a continuous manifold of instantiations 
of an object must be modeled. One such case is visual object recognition, where 
the images of an object from different viewpoints form a continuous manifold. 

6 SAMPLING 

Figures 3 and 4 depict samples drawn from the competitive and cooperative distri
bution. These samples were generated using the Metropolis Monte Carlo algorithm. 
Since full descriptions of this algorithm can be found elsewhere, we give only a brief 
description of the particular features used here . The basic procedure is to generate 
a new configuration of the system and calculate the change in energy (given by 
eq. 2). If the energy decreases, one accepts the new configuration unconditionally. 
If it increases then the new configuration is accepted with probability e-{3AE. 

In our sampling algorithm one variable is updated at a time (analogous to single 
spin flips). The acceptance ratio is much higher this way than if we update all the 
spins simultaneously. However, for some distributions the energy function may have 
approximately marginal directions; directions in which there is little or no barrier. 
The cooperative distribution has this property. We can expect critical slowing down 
due to this and consequently some sort of collective update (analogous to multi-spin 
updates or cluster updates) might make sampling more efficient. However, the type 
of update will depend on the specifics of the energy function and is not easy to 
determine. 
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7 DISCUSSION 

The competitive and cooperative distributions are examples of rectified Gaussians 
for which no good approximation by a standard Gaussian is possible. However, 
both distributions can be approximated by mixtures of standard Gaussians. The 
competitive distribution can be approximated by a mixture of N Gaussians, one 
for each singleton state. The cooperative distribution can also be approximated by 
a mixture of N Gaussians, one for each location of the lump on the ring. A more 
economical approximation would reduce the number of Gaussians in the mixture, 
but .make each one anisotropic[IO]. 

Whether the rectified Gaussian is superior to these mixture models is an empirical 
question that should be investigated empirically with specific real-world probabilis
tic modeling tasks. Our intuition is that the rectified Gaussian will turn out to be 
a good representation for nonlinear pattern manifolds, and the aim of this paper 
has been to make this intuition concrete. 

To make the rectified Gaussian useful in practical applications, it is critical to 
find tractable learning algorithms. It is not yet clear whether learning will be more 
tractable for the rectified Gaussian than it was for the Boltzmann machine. Perhaps 
the continuous variables of the rectified Gaussian may be easier to work with than 
the binary variables of the Boltzmann machine. 
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