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Abstract 

I describe a querying criterion that attempts to minimize the error 
of a learner by minimizing its estimated squared bias. I describe 
experiments with locally-weighted regression on two simple prob­
lems, and observe that this "bias-only" approach outperforms the 
more common "variance-only" exploration approach, even in the 
presence of noise. 

1 INTRODUCTION 

In recent years, there has been an explosion of interest in "active" machine learning 
systems. These are learning systems that make queries, or perform experiments 
to gather data that are expected to maximize performance. When compared with 
"passive" learning systems, which accept given, or randomly drawn data, active 
learners have demonstrated significant decreases in the amount of data required to 
achieve equivalent performance. In industrial applications, where each experiment 
may take days to perform and cost thousands of dollars, a method for optimally 
selecting these points would offer enormous savings in time and money. 

An active learning system will typically attempt to select data that will minimize 
its predictive error. This error can be decomposed into bias and variance terms. 
Most research in selecting optimal actions or queries has assumed that the learner 
is approximately unbiased, and that to minimize learner error, variance is the only 
thing to minimize (e.g. Fedorov [1972]' MacKay [1992]' Cohn [1996], Cohn et al., 
[1996], Paass [1995]). In practice, however, there are very few problems for which 
we have unbiased learners. Frequently, bias constitutes a large portion of a learner's 
error; if the learner is deterministic and the data are noise-free, then bias is the only 
source of error. Note that the bias term here is a statistical bias, distinct from the 
inductive bias discussed in some machine learning research [Dietterich and Kong, 
1995]. 
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In this paper I describe an algorithm which selects actions/ queries designed to mini­
mize the bias of a locally weighted regression-based learner. Empirically, "variance­
minimizing" strategies which ignore bias seem to perform well , even in cases where, 
strictly speaking, there is no variance to minimize. In the tasks considered in this 
paper, the bias-minimizing strategy consistently outperforms variance minimiza­
tion, even in the presence of noise. 

1.1 BIAS AND VARIANCE 

Let us begin by defining P(x, y) to be the unknown joint distribution over x and y, 
and P( x) to be the known marginal distribution of x (commonly called the input 
distribution). We denote the learner's output on input x, given training set D as 
y(x; D). We can then write the expected error of the learner as 

1 E [(y(x;D) - y(x))2Ix] P(x)dx, (1) 

where E[·] denotes the expectation over P and over training sets D. The expectation 
inside the integral may be decomposed as follows (Geman et al. , 1992): 

E [(y(x;D) - y(x))2Ix] E [(y(x) - E[ylx]?] (2) 

+ (Ev [y(x; D)] - E[ylx])2 

+Ev [(y(x;D) - Ev[y(x;D)])2] 

where Ev [.] denotes the expectation over training sets . The first term in Equation 2 
is the variance of y given x - it is the noise in the distribution, and does not depend 
on our learner or how the training data are chosen. The second term is the learner's 
squared bias, and the third is its variance; these last two terms comprise the expected 
squared error of the learner with respect to the regression function E[Ylx]. 

Most research in active learning assumes that the second term of Equation 2 is 
approximately zero, that is, that the learner is unbiased. If this is the case, then 
one may concentrate on selecting data so as to minimize the variance of the learner . 
Although this "all-variance" approach is optimal when the learner is unbiased , truly 
unbiased learners are rare . Even when the learner's representation class is able 
to match the target function exactly, bias is generally introduced by the learning 
algorithm and learning parameters. From the Bayesian perspective, a learner is 
only unbiased if its priors are exactly correct. 

The optimal choice of query would, of course, minimize both bias and variance, but 
I leave that for future work. For the purposes of this paper, I will only be concerned 
with selecting queries that are expected to minimize learner bias. This approach 
is justified in cases where noise is believed to be only a small component of the 
learner 's error. If the learner is deterministic and there is no noise, then strictly 
speaking, there is no error due to variance - all the error must be due to learner 
bias. In cases with non-determinism or noise, all-bias minimization, like all-variance 
minimization, becomes an approximation of the optimal approach. 

The learning model discussed in this paper is a form of locally weighted regression 
(LWR) [Cleveland et al., 1988], which has been used in difficult machine learning 
tasks, notably the "robot juggler" of Schaal and Atkeson [1994]. Previous work 
[Cohn et al., 1996] discussed all-variance query selection for LWR; in the remainder 
of this paper, I describe a method for performing all-bias query selection. Section 2 
describes the criterion that must be optimized for all-bias query selection. Section 3 
describes the locally weighted regression learner used in this paper and describes 
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how the all-bias criterion may be computed for it . Section 4 describes the results 
of experiments using this criterion on several simple domains. Directions for future 
work are discussed in Section 5. 

2 ALL-BIAS QUERY SELECTION 

Let us assume for the moment that we have a source of noise-free examples (Xi, Yi) 
and a deterministic learner which, given input X, outputs estimate Y(X).l Let us 
also assume that we have an accurate estimate of the bias of y which can be used 
to estimate the true function y(x) = y(x) - bias(x). We will break these rather 
strong assumptions of noise-free examples and accurate bias estimates in Section 4, 
but they are useful for deriving the theoretical approach described below. 

Given an accurate bias estimate, we must force the biased estimator into the best 
approximation of y(x) with the fewest number of examples. This, in effect, trans­
forms the query selection problem into an example filter problem similar to that 
studied by Plutowski and White [1993] for neural networks. Below, I derive this 
criterion for estimating the change in error at X given a new queried example at x. 
Since we have (temporarily) assumed a deterministic learner and noise-free data, 
the expected error in Equation 2 simplifies to: 

E [(Y( X; 'D) - y( x))2Ix, 'D] (Y(x; 'D) - y(x))2 (3) 

We want to select a new x such that when we add (x, f)), the resulting squared bias 
is minimized: 

(Y' - y? == (y(x; 'D U (x, f))) - y(x))2 . (4) 

I will, for the remainder of the paper, use the "'" to indicate estimates based on the 
initial training set plus the additional example (x, y). To minimize Expression 4, 
we need to compute how a query at x will change the learner's bias at x. If we 
assume that we know the input distribution,2 then we can integrate this change 
over the entire domain (using Monte Carlo procedures) to estimate the resulting 
average change, and select a x such that the expected squared bias is minimized. 
Defining bias == y - y and f:,.y == y' - y, we can write the new squared bias as: 

bias,2 (y' - y)2 = (Y + f:,.y _ y)2 

f:,.y2 + 2f:,.y . bias + bias2 (5) 

Note that since bias as defined here is independent of x, minimizing the bias is 
equivalent to minimizing f:,.y2 + 2f:,.y . bias. 

The estimate of bias' tells us how much our bias will change for a given x. We may 
optimize this value over x in one of a number of ways. In low dimensional spaces, it 
is often sufficient to consider a set of "candidate" x and select the one promising the 
smallest resulting error. In higher dimensional spaces, it is often more efficient to 
search for an optimal x with a response surface technique [Box and Draper , 1987], 
or hill climb on abias,2 / ax. 

Estimates of bias and f:,.y depend on the specific learning model being used. In 
Section 3, I describe a locally weighted regression model, and show how differentiable 
estimates of bias and f:,.y may be computed for it . 

1 For clarity, I will drop the argument :z; except where required for disambiguation. I 
will also denote only the univariate case; the results apply in higher dimensions as well. 

2This assumption is contrary to the assumption norma.lly made in some forms of learn­
ing, e.g. PAC-learning, but it is appropriate in many domains. 
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2.1 AN ASIDE: WHY NOT JUST USE Y - Mas? 

If we have an accurate bias estimate, it is reasonable to ask why we do not simply 
use the corrected y - C;;;S as our predictor. The answer has two parts, the first 
of which is that for most learners, there are no perfect bias estimators - they 
introduce their own bias and variance, which must be addressed in data selection. 

Second, we can define a composite learner Ye == Y - C:;;;S. Given a random training 
sample then, we would expect Ye to outperform y. However, there is no obvious 
way to select data for this composite learner other than selecting to maximize the 
performance of its two components. In our case, the second component (the bias 
estimate) is non-analytic, which leaves us selecting data so as to maximize the 
performance of the first component (the uncorrected estimator). We are now back 
to our original problem: we can select data so as to minimize either the bias or 
variance of the uncorrected LWR-based learner. Since the purpose of the correction 
is to give an unbiased estimator, intuition suggests that variance minimization would 
be the more sensible route in this case. Empirically, this approach does not appear 
to yield any benefit over uncorrected variance minimization (see Figure 1). 

3 LOCALLY WEIGHTED REGRESSION 

The type of learner I consider here is a form of locally weighted regression (LWR) 
that is a slight variation on the LOESS model of Cleveland et al. [1988] (see Cohn 
et al., [1996] for details). The LOESS model performs a linear regression on points 
in the data set , weighted by a kernel centered at x. The kernel shape is a design 
parameter: the original LOESS model uses a "tricubic" kernel; in my experiments 
I use the more common Gaussian 

where Ie is a smoothing parameter. For brevity, I will drop the argument x for hi(x), 
and define n = 2:i hi. We can then write the weighted means and covariances as: 

"" Xi J.l:r; = L..J hi -, 
. n , 

Yi 
J.ly = L h,-, 

. n , 
"" (Xi - X)(Yi - J.ly) 

U:r;y = L..J hi . 
. n , 

We use these means and covariances to produce an estimate Y at the x around which 
the kernel is centered, with a confidence term in the form of a variance estimate: 

In all the experiments discussed in this paper, the smoothing parameter Ie was set 
so as to minimize u2. 
The low cost of incorporating new training examples makes this form of locally 
weighted regression appealing for learning systems which must operate in real time, 
or with time-varying target functions (e.g. [Schaal and Atkeson 1994]). 
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3.1 COMPUTING D..y FOR LWR 

If we know what new point (x, y) we're going to add, computing D..y for LWR is 
straightforward. Defining h as the weight given to x, and n as n + h we can write 

I 

A A A I A I U xy ( I ) U xy ( ) 
�~�y� = y - y = J.L + - x - J.L - J.L - - x - J.Lx Y U/2 x y u2 

x x 

h (Y ___ J.Ly) _ uxy (x _ J.Lx) + (x _ �n�~�x� _ �~�x�)� . nuXY_ + h . �~�x� -:xKii - J.Ly) 
n u; n n nu;+h·(x-J.Lx)2 

Note that computing D..y requires us to know both the x and y of the new point. In 
practice, we only know x. If we assume, however, that we can estimate the learner's 
bias at any x, then we can also estimate the unknown value y �~� y(x) - bias(x). 
Below, I consider how to compute the bias estimate. 

3.2 ESTIMATING BIAS FOR LWR 

The most common technique for estimating bias is cross-validation. Standard cross­
validation however, only gives estimates of the bias at our specific training points, 
which are usually combined to form an average bias estimate. This is sufficient if 
one assumes that the training distribution is representative of the test distribution 
(which it isn't in query learning) and if one is content to just estimate the bias 
where one already has training data (which we can't be). 

In the query selection problem, we must be able to estimate the bias at all possible 
x. Box and Draper [1987] suggest fitting a higher order model and measuring the 
difference. For the experiments described in this paper, this method yielded poor 
results; two other bias-estimation techniques, however, performed very well. 

One method of estimating bias is by bootstrapping the residuals of the training 
points. One produces a "bootstrap sample" of the learner's residuals on the training 
data, and adds them to the original predictions to create a synthetic training set. By 
averaging predictions over a number of bootstrapped training sets and comparing 
the average prediction with that of the original predictor, one arrives at a first-order 
bootstrap estimate of the predictor's bias [Connor 1993; Efron and Tibshirani, 1993]. 
It is known that this estimate is itself biased towards zero; a standard heuristic is 
to divide the estimate by 0.632 [Efron, 1983]. 

Another method of estimating bias of a learner is by fitting its own cross-validated 
residuals. We first compute the cross-validated residuals on the training examples. 
These produce estimates of the learner's bias at each of the training points. We 
can then use these residuals as training examples for another learner (again LWR) 
to produce estimates of what the cross-validated error would be in places where we 
don't have training data. 

4 EMPIRICAL RESULTS 

In the previous two sections, I have explained how having an estimate of D..y and 
bias for a learner allows one to compute the learner's change in bias given a new 
query, and have shown how these estimates may be computed for a learner that 
uses locally weighted regression. Here, I apply these results to two simple problems 
and demonstrate that they may actually be used to select queries that minimize 
the statistical bias (and the error) of the learner. The problems involve learning the 
kinematics of a planar two-jointed robot arm: given the shoulder and elbow joint 
angles, the learner must predict the tip position. 






