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Abstract

This paper discusses the use of multilayer feedforward neural net-
works for predicting a stock’s excess return based on its exposure
to various technical and fundamental factors. To demonstrate the
effectiveness of the approach a hedged portfolio which consists of
equally capitalized long and short positions is constructed and its

historical returns are benchmarked against T-bill returns and the
S&P500 index.

1 Introduction

Traditional investment approaches (Elton and Gruber, 1991) assume that the return
of a security can be described by a multifactor linear model:

Ri=ai+unF4+u2Fa+...+uLFL +e (1)

where R; denotes the return on security z, F; are a set of factor values and u;; are
security ¢ exposure to factor /, @; is an intercept term (which under the CAPM
framework is assumed to be equal to the risk free rate of return (Sharpe, 1984))
and e; is a random term with mean zero which is assumed to be uncorrelated across
securities.

The factors may consist of any set of variables deemed to have explanatory power for
security returns. These could be aspects of macroeconomics, fundamental security
analysis, technical attributes or a combination of the above. The value of a factor
is the expected excess return above risk free rate of a security with unit exposure to
the factor and zero exposure to all other factors. The choice of factors can be viewed
as a proxy for the "state of the world” and their selection defines a metric imposed
on the universe of securities: Once the factors are set, the model assumption is that,
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on average, two securities with similar factor loadings (u;;) will behave in a similar
manner.

The factor model (1) was not originally developed as a predictive model, but rather
as an explanatory model, with the returns R; and the factor values F; assumed to
be contemporaneous. To utilize (1) in a predictive manner, each factor value must
be replaced by an estimate, resulting in the model

Ri=a;i+uaFy +uppFo+ ...+ wi FL + ¢ (2)

where R; is a security‘s future return and F} is an estimate of the future value
of factor I, based on currently available information. The estimation of F} can be
approached with varying degree of sophistication ranging from a simple use of the
historical mean to estimate the factor value (setting Fi(t) = F}), to more elaborate
approaches attempting to construct a time series model for predicting the factor
values.

Factor models of the form (2) can be employed both to control risk and to enhance
return. In the first case, by capturing the major sources of correlation among
security returns, one can construct a well balanced portfolio which diversifies specific
risk away. For the latter, if one is able to predict the likely future value of a factor,
higher return can be achieved by constructing a portfolio that tilts toward “good”
factors and away from “bad” ones.

While linear factor models have proven to be very useful tools for portfolio analysis
and investment management, the assumption of linear relationship between factor
values and expected return is quite restrictive. Specifically, the use of linear models
assumes that each factor affects the return independently and hence, they ignore the
possible interaction between different factors. Furthermore, with a linear model, the
expected return of a security can grow without bound as its exposure to a factor
increases. To overcome these shortcomings of linear models, one would have to
consider more general models that allow for nonlinear relationship among factor
values, security exposures and expected returns.

Generalizing (2), while maintaining the basic premise that the state of the world can
be described by a vector of factor values and that the expected return of a security
is determined through its coordinates in this factor world, leads to the nonlinear
model:

RI':f(uilsuiZ;"')uiL’ﬁlsﬁ?:"'aﬁ-‘L)'{"ei (3)
where f() is a nonlinear function and e; is the noise unexplained by the model, or
”security specific risk” .

The prediction task for the nonlinear model (3) is substantially more complex than
in the linear case since it requires both the estimation of future factor values as

well as a determination of the unknown function f The task can be somewhat
simplified if factor estimates are replaced with their historical means:

R; fluin, win, - uin, Py, Fay .. Fr) + ¢
fluin, wia, ..., %) + € (4)

where now u;; are the security’s factor exposure at the beginning of the period over
which we wish to predict.

el

To estimate the unknown function f(-), a family of models needs to be selected,
from which a model is to be identified. In the following we propose modeling the re-
lationship between factor exposures and future returns using the class of multilayer
feedforward neural networks (Hertz et al., 1991). Their universal approximation
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capabilities (Cybenko, 1989; Hornik et al., 1989), as well as the existence of an ef-
fective parameter tuning method (the backpropagation algorithm (Rumelhart et al.,
1986)) makes this family of models a powerful tool for the identification of nonlinear
mappings and hence a natural choice for modeling (4).

2 The stock selection problem

Our objective in this paper is to test the ability of neural network based models
of the form (4) to differentiate between attractive and unattractive stocks. Rather
than trying to predict the total return of a security, the objective is to predict its
performance relative to the market, hence eliminating the need to predict market
directions and movements.

The data set consists of monthly historical records (1989 through 1995) for the
largest 1200-1300 US companies as defined by the BARRA HiCap universe. Each
data record (1300 per month) consists of an input vector composed of a security’s
factor exposures recorded at the beginning of the month and the corresponding
output is the security’s return over the month. The factors used to build the model
include Earning/Price, Book/Price, past price performance, consensus of analyst
sentiments etc, which have been suggested in the financial literature as having
explanatory power for security returns (e.g. (Fama and French, 1992)). To minimize
risk, exposure to other unwarranted factors is controlled using a quadratic optimizer.

3 Model construction and testing

Potentially, changes in a price of a security are a function of a very large number of
forces and events, of which only a small subset can be included in the factor model
(4). All other sources of return play the role of noise whose magnitude is probably
much larger than any signal that can be explained by the factor exposures. When
this information is used to train a neural network, the network attempts to replicate
the examples it sees and hence much of what it tries to learn will be the particular
realizations of noise that appeared in the training set.

To minimize this effect, both a validation set and regularization are used in the
training. The validation set is used to monitor the performance of the model with
data on which it has not been trained on. By stopping the learning process when
validation set error starts to increase, the learning of noise is minimized. Regular-
ization further limits the complexity of the function realized by the network and,

through the reduction of model variance, improves generalization (Levin et al.,
1994).

The stock selection model is built using a rolling train/test window. First, M
“two layer” feedforward networks are built for each month of data (result is rather
insensitive to the particular choice of M). Each network is trained using stochastic
gradient descent with one quarter of the monthly data (randomly selected) used as
a validation set. Regularization is done using principal component pruning (Levin
et al., 1994). Once training is completed, the models constructed over N consecutive
month of data (again, result is insensitive to particular choice of N) are combined
(thus increasing the robustness of the model (Breiman, 1994)) to predict the returns
in the following month. Thus the predicted (out of sample) return of stock 7 in
month & is given by

N=M

3 1

Ri(k) = 57 2o NNe—j(ufy, by, ufy) (5)
2

=1
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Figure 1: Average correlation between predicted alphas and realized returns for
linear and nonlinear models

where R;(k) is stock’s i predicted return, NNi_;(-) denoted the neural network

model built in month k — j and uf are stock’s i factor exposures as measured at
the beginning of month k.

4 Benchmarking to linear

As a first step in evaluating the added value of the nonlinear model, its performance
was benchmarked against a generalized least squares linear model. Each model was
run over three universes: all securities in the HiCap universe, the extreme 200 stocks
(top 100, bottom 100 as defined by each model), and the extreme 100 stocks. As
a comparative performance measure we use the Sharpe ratio (Elton and Gruber,
1991). As shown in Table 4, while the performance of the two models is quite
comparable over the whole universe of stocks, the neural network based model
performs better at the extremes, resulting in a substantially larger Sharpe ratio
(and of course, when constructing a portfolio, it is the extreme alphas that have
the most impact on performance).

[ Portfolio\Model || Linear | Nonlinear ||

All HiCap 6.43 6.92
100 long/100 short 4,07 5.49
50 long/50 short 3.07 4.23

Table 1: Ex ante Sharpe ratios: Neural network vs. linear

While the numbers in the above table look quite impressive, it should be emphasised
that they do not represent returns of a practical strategy: turnover is huge and the
figures do not take transaction costs into account. The main purpose of the table












