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Abstract 

We study Bayesian networks for continuous variables using non­
linear conditional density estimators. We demonstrate that use­
ful structures can be extracted from a data set in a self-organized 
way and we present sampling techniques for belief update based on 
Markov blanket conditional density models. 

1 Introduction 

One of the strongest types of information that can be learned about an unknown 
process is the discovery of dependencies and -even more important- of indepen­
dencies. A superior example is medical epidemiology where the goal is to find the 
causes of a disease and exclude factors which are irrelevant. Whereas complete 
independence between two variables in a domain might be rare in reality (which 
would mean that the joint probability density of variables A and B can be factored: 
p(A, B) = p(A)p(B)), conditional independence is more common and is often a 
result from true or apparent causality: consider the case that A is the cause of B 
and B is the cause of C, then p(CIA, B) = p(CIB) and A and C are independent 
under the condition that B is known. Precisely this notion of cause and effect and 
the resulting independence between variables is represented explicitly in Bayesian 
networks. Pearl (1988) has convincingly argued that causal thinking leads to clear 
knowledge representation in form of conditional probabilities and to efficient local 
belief propagating rules. 

Bayesian networks form a complete probabilistic model in the sense that they repre­
sent the joint probability distribution of all variables involved. Two of the powerful 
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features of Bayesian networks are that any variable can be predicted from any sub­
set of known other variables and that Bayesian networks make explicit statements 
about the certainty of the estimate of the state of a variable. Both aspects are par­
ticularly important for medical or fault diagnosis systems. More recently, learning 
of structure and of parameters in Bayesian networks has been addressed allowing 
for the discovery of structure between variables (Buntine, 1994, Heckerman, 1995). 

Most of the research on Bayesian networks has focused on systems with discrete 
variables, linear Gaussian models or combinations of both. Except for linear mod­
els, continuous variables pose a problem for Bayesian networks. In Pearl's words 
(Pearl, 1988): "representing each [continuous] quantity by an estimated magnitude 
and a range of uncertainty, we quickly produce a computational mess. [Continuous 
variables] actually impose a computational tyranny of their own." In this paper we 
present approaches to applying the concept of Bayesian networks towards arbitrary 
nonlinear relations between continuous variables. Because they are fast learners we 
use Parzen windows based conditional density estimators for modeling local depen­
dencies. We demonstrate how a parsimonious Bayesian network can be extracted 
out of a data set using unsupervised self-organized learning. For belief update we 
use local Markov blanket conditional density models which - in combination with 
Gibbs sampling- allow relatively efficient sampling from the conditional density of 
an unknown variable. 

2 Bayesian Networks 

This brief introduction of Bayesian networks follows closely Heckerman, 1995. Con­
sidering a joint probability density I p( X) over a set of variables {Xl, ••. , X N} we can 
decompose using the chain rule of probability 

N 

p(x) = IIp(xiIXI, ... ,Xi-I). (1) 
i=l 

For each variable Xi, let the parents of Xi denoted by Pi ~ {XI, . .. , Xi- d be a set 
of variables2 that renders Xi and {x!, ... , Xi-I} independent, that is 

(2) 

Note, that Pi does not need to include all elements of {XI, ... , Xi- Il which indi­
cates conditional independence between those variables not included in Pi and Xi 
given that the variables in Pi are known. The dependencies between the variables 
are often depicted as directed acyclic3 graphs (DAGs) with directed arcs from the 
members of Pi (the parents) to Xi (the child). Bayesian networks are a natural 
description of dependencies between variables if they depict causal relationships be­
tween variables. Bayesian networks are commonly used as a representation of the 
knowledge of domain experts. Experts both define the structure of the Bayesian 
network and the local conditional probabilities. Recently there has been great 

1 For simplicity of notation we will only treat the continuous case. Handling mixtures 
of continuous and discrete variables does not impose any additional difficulties. 

2Usually the smallest set will be used. Note that in Pi is defined with respect to a 
given ordering of the variables. 

:li.e. not containing any directed loops. 
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emphasis on learning structure and parameters in Bayesian networks (Heckerman, 
1995). Most of previous work concentrated on models with only discrete variables 
or on linear models of continuous variables where the probability distribution of all 
continuous given all discrete variables is a multidimensional Gaussian. In this paper 
we use these ideas in context with continuous variables and nonlinear dependencies. 

3 Learning Structure and Parameters in Nonlinear 
Continuous Bayesian Networks 

Many of the structures developed in the neural network community can be used to 
model the conditional density distribution of continuous variables p( Xi IPi). Under 
the usual signal-plus independent Gaussian noise model a feedforward neural net­
work N N(.) is a conditional density model such that p(Xi IPi) = G(Xi; N N(Pi), 0- 2 ), 

where G(x; c, 0-2 ) is our notation for a normal density centered at c and with variance 
0-2 • More complex conditional densities can, for example, be modeled by mixtures 
of experts or by Parzen windows based density estimators which we used in our ex­
periments (Section 5). We will use pM (Xi IP;) for a generic conditional probability 
model. The joint probability model is then 

N 

pM (X) = II pM (xi/Pi). (3) 
i=l 

following Equations 1 and 2. Learning Bayesian networks is usually decomposed 
into the problems of learning structure (that is the arcs in the network) and of 
learning the conditional density models pM (Xi IPi) given the structure4 . First as­
sume the structure of the network is given. If the data set only contains complete 
data, we can train conditional density models pM (Xi IPi ) independently of each 
other since the log-likelihood of the model decomposes conveniently into the indi­
vidual likelihoods of the models for the conditional probabilities. Next, consider 
two competing network structures. We are basically faced with the well-known 
bias-variance dilemma: if we choose a network with too many arcs, we introduce 
large parameter variance and if we remove too many arcs we introduce bias. Here, 
the problem is even more complex since we also have the freedom to reverse arcs. 
In our experiments we evaluate different network structures based on the model 
likelihood using leave-one-out cross-validation which defines our scoring function 
for different network structures. More explicitly, the score for network structure 
S is Score = 10g(p(S)) + Lev, where p(S) is a prior over the network structures 

and Lev = ~f=llog(pM (xkIS, X - {xk})) is the leave-one-out cross-validation log­
likelihood (later referred to as cv-Iog-likelihood). X = {xk}f=l is the set of training 
samples, and pM (x k IS, X - {xk}) is the probability density of sample Xk given the 
structure S and all other samples. Each of the terms pM (xk IS, X - {xk}) can be 
computed from local densities using Equation 3. 

Even for small networks it is computationally impossible to calculate the score for all 
possible network structures and the search for the global optimal network structure 

4Differing from Heckerman we do not follow a fully Bayesian approach in which priors 
are defined on parameters and structure; a fully Bayesian approach is elegant if the oc­
curring integrals can be solved in closed form which is not the case for general nonlinear 
models or if data are incomplete. 
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is NP-hard. In the Section 5 we describe a heuristic search which is closely related to 
search strategies commonly used in discrete Bayesian networks (Heckerman, 1995). 

4 Prior Models 

In a Bayesian framework it is useful to provide means for exploiting prior knowledge, 
typically introducing a bias for simple structures. Biasing models towards simple 
structures is also useful if the model selection criteria is based on cross-validation, 
as in our case, because of the variance in this score. In the experiments we added 
a penalty per arc to the log-likelihood i.e. 10gp(S) ex: -aNA where NA is the 
number of arcs and the parameter a determines the weight of the penalty. Given 
more specific knowledge in form of a structure defined by a domain expert we 
can alternatively penalize the deviation in the arc structure (Heckerman, 1995). 
Furthermore, prior knowledge can be introduced in form of a set of artificial training 
data. These can be treated identical to real data and loosely correspond to the 
concept of a conjugate prior. 

5 Experiment 

In the experiment we used Parzen windows based conditional density estimators to 
model the conditional densities pM (Xj IPd from Equation 2, i.e. 

(4) 

where {xi }f=l is the training set. The Gaussians in the nominator are centered 

at (x7, Pf) which is the location of the k-th sample in the joint input/output (or 
parent/child) space and the Gaussians in the denominator are centered at (Pf) 
which is the location of the k-th sample in the input (or parent) space. For each 
conditional model, (J"j was optimized using leave-one-out cross validation5 • 

The unsupervised structure optimization procedure starts with a complete Bayesian 
model corresponding to Equation 1, i.e. a model where there is an arc between 
any pair of variables6 • Next, we tentatively try all possible arc direction changes, 
arc removals and arc additions which do not produce directed loops and evaluate 
the change in score. After evaluating all legal single modifications, we accept the 
change which improves the score the most. The procedure stops if every arc change 
decreases the score. This greedy strategy can get stuck in local minima which 
could in principle be avoided if changes which result in worse performance are also 
accepted with a nonzero probability 7 (such as in annealing strategies, Heckerman, 
1995). Calculating the new score at each step requires only local computation. 
The removal or addition of an arc corresponds to a simple removal or addition of 
the corresponding dimension in the Gaussians of the local density model. However, 

5Note that if we maintained a global (7 for all density estimators, we would maintain 
likelihood equivalence which means that each network displaying the same independence 
model gets the same score on any test set . 

6The order of nodes determining the direction of initial arcs is random. 
7 In our experiments we treated very small changes in score as if they were exactly zero 

thus allowing small decreases in score. 
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Figure 1: Left: evolution of the cv-log-Iikelihood (dashed) and of the log-likelihood 
on the test set (continuous) during structure optimization. The curves are averages 
over 20 runs with different partitions of training and test sets and the likelihoods 
are normalized with respect to the number of cv- or test-samples, respectively. The 
penalty per arc was a = 0.1. The dotted line shows the Parzen joint density model 
commonly used in statistics, i.e. assuming no independencies and using the same 
width for all Gaussians in all conditional density models. Right: log-likelihood 
of the local conditional Parzen model for variable 3 (pM (x3IP3)) on the test set 
(continuous) and the corresponding cv-log-likelihood (dashed) as a function of the 
number of parents (inputs). 
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Figure 2: Final structure of a run on the full data set. 

after each such operation the widths of the Gaussians O'i in the affected local models 
have to be optimized. An arc reversal is simply the execution of an arc removal 
followed by an arc addition. 

In our experiment, we used the Boston housing data set, which contains 506 sam­
ples. Each sample consists of the housing price and 14 variables which supposedly 
influence the housing price in a Boston neighborhood (Figure 2). Figure 1 (left) 
shows an experiment where one third of the samples was reserved as a test set to 
monitor the process. Since the algorithm never sees the test data the increase in 
likelihood of the model on the test data is an unbiased estimator for how much 
the model has improved by the extraction of structure from the data. The large 
increase in the log-likelihood can be understood by studying Figure 1 (right). Here 
we picked a single variable (node 3) and formed a density model to predict this vari­
able from the remaining 13 variables. Then we removed input variables in the order 
of their significance. After the removal of a variable, 0'3 is optimized. Note that the 
cv-Iog-likelihood increases until only three input variables are left due to the fact 






