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Abstract

We propose a new learning method, “Generalized Learning Vec-
tor Quantization (GLVQ),” in which reference vectors are updated
based on the steepest descent method in order to minimize the cost
function. The cost function is determined so that the obtained
learning rule satisfies the convergence condition. We prove that
Kohonen’s rule as used in LVQ does not satisfy the convergence
condition and thus degrades recognition ability. Experimental re-
sults for printed Chinese character recognition reveal that GLVQ
is superior to LVQ in recognition ability.

1 INTRODUCTION

Artificial neural network models have been applied to character recognition with
good results for small-set characters such as alphanumerics (Le Cun et al., 1989)
(Yamada et al., 1989). However, applying the models to large-set characters such
as Japanese or Chinese characters is difficult because most of the models are based
on Multi-Layer Perceptron (MLP) with the back propagation algorithm, which has
a problem in regard to local minima as well as requiring a lot of calculation.

Classification methods based on pattern matching have commonly been used for
large-set character recognition. Learning Vector Quantization (LVQ) has been stud-
ied to generate optimal reference vectors because of its simple and fast learning al-
gorithm (Kohonen, 1989; 1995). However, one problem with LVQ is that reference
vectors diverge and thus degrade recognition ability. Much work has been done on
improving LVQ (Lee & Song, 1993) (Miyahara & Yoda, 1993) (Sato & Tsukumo,
1994), but the problem remains unsolved.

Recently, a generalization of the Simple Competitive Learning (SCL) has been under
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study (Pal et al., 1993) (Gonzalez et al., 1995), and one unsupervised learning
rule has been derived based on the steepest descent method to minimize the cost
function. Pal et al. call their model “Generalized Learning Vector Quantization,”
but it is not a generalization of Kohonen’s LVQ.

In this paper, we propose a new learning method for supervised learning, in which
reference vectors are updated based on the steepest descent method, to minimize
the cost function. This is a generalization of Kohonen’s LVQ, so we call it “Gener-
alized Learning Vector Quantization (GLVQ).” The cost function is determined so
that the obtained learning rule satisfies the convergence condition. We prove that
Kohonen’s rule as used in LVQ does not satisfy the convergence condition and thus
degrades recognition ability. Preliminary experiments revealed that non-linearity
in the cost function is very effective for improving recognition ability. Printed Chi-
nese character recognition experiments were carried out, and we can show that the
recognition ability of GLVQ is very high compared with LVQ.

2 REVIEW OF LVQ

Assume that a number of reference vectors wy, are placed in the input space. Usu-
ally, several reference vectors are assigned to each class. An input vector & is decided
to belong to the same class to which the nearest reference vector belongs. Let w.(t)
represent sequences of the wy, in the discrete-time domain. Heretofore, several LVQ
algorithms have been proposed (Kohonen, 1995), but in this section, we will focus
on LVQ2.1. Starting with properly defined initial values, the reference vectors are
updated as follows by the LVQ2.1 algorithm:

wi(t+1) = wi(t) — at)(z — wi(t)), (1)

wj(t+1) w;(t) + a(t)(z — w;(t)), (2)
where 0 < a(t) < 1, and a(t) may decrease monotonically with time. The two
reference vectors w; and w; are the nearest to x;  and w; belong to the same
class, while £ and w; belong to different classes. Furthermore, £ must fall into
the “window,” which is defined around the midplane of w; and w;. That is, if the
following condition is satisfied, w; and w; are updated:

: d; d;j

min (d,-’ d;’) > s, (3)
where d; = [z — w;|, d; = |& — w;|. The LVQ2.1 algorithm is based on the idea
of shifting the decision boundaries toward the Bayes limits with attractive and
repulsive forces from x. However, no attention is given to what might happen to
the location of the wy, so the reference vectors diverge in the long run. LVQ3
has been proposed to ensure that the reference vectors continue approximating the
class distributions, but it must be noted that if only one reference vector is assigned
to each class, LVQ3 is the same as LVQ2.1, and the problem of reference vector
divergence remains unsolved.

3 GENERALIZED LVQ

To ensure that the reference vectors continue approximating the class distributions,
we propose a new learning method based on minimizing the cost function. Let w,
be the nearest reference vector that belongs to the same class of &, and likewise let
wj be the nearest reference vector that belongs to a different class from x. Let us

consider the relative distance difference p(z) defined as follows:
dy — dy
dy +dy’

uE) = (4)
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where d; and d; are the distances of # from w, and w5, respectively. u(x) ranges
between —1 and +1, and if u(x) is negative, Z is classified correctly; otherwise,
is classified incorrectly. In order to improve error rates, u(x) should decrease for
all input vectors. Thus, a criterion for learning is formulated as the minimizing of
a cost function S defined by

N
S=Y fu@), (5)

where NV is the number of input vectors for training, and f(u) is a monotonically
increasing function. To minimize S, w; and w, are updated based on the steepest
descent method with a small positive constant a as follows:

oS

Wy 0y~ @ms §=1,2 (6)

If squared Euclid distance, d; = |z — w;|?, is used, we can obtain the following.
as S op 0d, of  4d,
—_——— - 7
el v T o gt ol Lt (")
0S _0S 0p 0dy, _  Of 4d,
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Therefore, the GLVQ’s learning rule can be described as follows:

of da

w, wl+&a—m(m—w1) (g)
of d;

Wy «— W3 — aaﬂm(it ‘tDQ) (10)

Let us discuss the meaning of f(u). 8f/0u is a kind of gain factor for updating,
and its value depends on z. In other words, 8f/0u is a weight for each . To
decrease the error rate, it is effective to update reference vectors mainly by input
vectors around class boundaries, so that the decision boundaries are shifted toward
the Bayes limits. Accordingly, f(x) should be a non-linear monotonically increasing
function, and it is considered that classification ability depends on the definition
of f(u). In this paper, 8f/0u = f(p,t){1 — f(p,t)} was used in the experiments,
where t is learning time and f(g,t) is a sigmoid function of 1/(1 + e~#!). In this
case, Of/Op has a single peak at p = 0, and the peak width becomes narrower as ¢
increases, so the input vectors that affect learning are gradually restricted to those
around the decision boundaries.

Let us discuss the meaning of u. w; and w, are updated by attractive and repulsive
forces from z, respectively, as shown in Egs. (9) and (10), and the quantities of
updating, |Aw;| and |Aw;|, depend on derivatives of u. Reference vectors will
converge to the equilibrium states defined by attractive and repulsive forces, so it
is considered that convergence property depends on the definition of u.

4 DISCUSSION

First, we show that the conventional LVQ algorithms can be derived based on the
framework of GLVQ. If u = d; for dy < da, p = —d3 for d; > da, and f(p) = p, the
cost function is written as § = 37, .4 d1 — 204 54, d2. Then, we can obtain the
following:
wy — wy + oz —w,), wy —wy,  fordy <d, (11)
wy — wy — a(x — wy), W — W, for di > ds (12)
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This learning algorithm is the same as LVQ1. If u = dy —d; and f(u) = pfor |p| < s,
f(u) = const for [u| > s, the cost function is written as § =37, ., (d1 — d2) + C.
Then, we can obtain the following:

if |u| < s (« falls into the window)
w; «— w;+a(x—-ws) (13)
wy — wi-—oa(z-—ws) (14)
In this case, w; and w, are updated simultaneously, and this learning algorithm

is the same as LVQ2.1. So it can be said that GLVQ is a generalized model that
includes the conventional LVQs.

Next, we discuss the convergence condition. We can obtain other learning algo-
rithms by defining a different cost function, but it must be noted that the conver-
gence property depends on the definition of the cost function. The main difference
between GLVQ and LVQ2.1 is the definition of yu; u = (d1 — d3)/(d1 +d2) in GLVQ,
g = dy —dy in LVQ2.1. Why do the reference vectors diverge in LVQ2.1, while they
converge in GLVQ, as shown later? In order to clarify the convergence condition,
let us consider the following learning rule:

w; — w;+alz—w,|(z - w) (15)
wy — wy—alr—w | (z - ws) (16)

Here, |Aw;| and |Aw,| are the quantities of updating by the attractive and the
repulsive forces, respectively. The ratio of these two is calculated as follows:

|Aw;| ol — wslf|lz —wi| _ |z —w,|t?
|Aw2| - Ctl:l: s w1|’~‘|m —‘l.D2| - |:E —wll"’—l

(17)

If the initial values of reference vectors are properly defined, most x’s will satisfy
|z — wy| < | — wy|. Therefore, if k > 1, the attractive force is greater than the
repulsive force, and the reference vectors will converge, because the attractive forces
come from @’s that belong to the same class of w;. In GLVQ, k& = 2 as shown in
Egs. (9) and (10), and the vectors will converge, while they will diverge in LVQ2.1
because k = 0. According to the above discussion, we can use d;/(d; + dz) or just
d;, instead of d;/(dy +dz)? in Egs. (9) and (10). This correction does not affect the
convergence condition. The essential problem in LVQ2.1 results from the drawback
in Kohonen’s rule with k = 0. In other words, the cost function used in LVQ is not
determined so that the obtained learning rule satisfies the convergence condition.

5 EXPERIMENTS

5.1 PRELIMINARY EXPERIMENTS

The experimental results using Eqgs. (15) and (16) with a = 0.001, shown in Fig. 1,
support the above discussion on the convergence condition. Two-dimensional input
vectors with two classes shown in Fig. 1(a) were used in the experiments. The ideal
decision boundary that minimizes the error rate is shown by the broken line. One
reference vector was assigned to each class with initial values (z,y) = (0.3,0.5) for
Class A and (z,y) = (0.7,0.5) for Class B. Figure 1(b) shows the distance between
the two reference vectors during learning. The distance remains the same value for
k > 1, while it increases with time for k < 1; that is, the reference vectors diverge.

Figure 2 shows the experimental results from GLVQ for linearly non-separable pat-
terns compared with LVQ2.1. The input vectors shown in Fig. 2(a) were obtained
by shifting all input vectors shown in Fig. 1(a) to the right by |y — 0.5|. The ideal












